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Abstract: Peripheral nerve stimulation (PNS) has evolved substantially over recent decades in terms of hardware and evidence 
supporting efficacy. Treatment targets continue to expand and address both pain and functional applications. The American Society of 
Pain and Neuroscience (ASPN) seeks to substantially update and expand upon a review of the evidence supporting PNS as well as 
provide guidelines for clinical practice. A diverse multidisciplinary panel of experts was selected to provide opinions and guidance 
based on evidence-graded assessment and clinical knowledge. This document aims to serve as a resource for clinicians and payors in 
the interest of expanding awareness of the breadth of research in the field of PNS and expanding access to therapy.
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Introduction
Peripheral nerve stimulation (PNS) is an essential category of neuromodulation, allowing for a targeted approach to focal 
pain coverage via a peripheral axon. Early use of devices for this indication involved cuffed electrodes and paddle leads 
originally designed for spinal use. Significant technological advances have resulted in hardware customized for this 
application with implantable electrodes and decoupled internal pulse generators that operate in concert with external 
power sources. This is a shift from repurposing spinal cord stimulator (SCS) systems for this application.1 Expanding 
payor coverage, growing research demonstrating efficacy, and proliferating descriptions of procedural techniques for 
burgeoning indications have increased the prevalence and accessibility of PNS for the benefit of patients.2 The initial 
description of this therapy was by Sweet and Wall in 1967 via an open neurosurgical method. Weiner and Reed described 
a percutaneous lead placement technique that accelerated the procedure’s adoption and ease.3 Current work is focused on 
expanding indications, targets, and payor coverage while advancing the technology and design of leads and implantable 
and wearable hardware.

Methods
The American Society of Pain and Neuroscience (ASPN) is committed to increasing evidence-based access to treatment. 
In furtherance of that mission, ASPN created a multidisciplinary panel of authors consisting of anesthesiologists, pain 
medicine physicians, physical medicine and rehabilitation physicians, and neurosurgeons who are experts and leaders in 
PNS. This panel was supplemented with residents and fellow physicians demonstrating significant potential in the field. 
Critical focus areas were developed into an outline and refined by the lead author, senior authors, and a small group of 
section editors. The authors then worked in teams and undertook a search of global English-language literature from 
multiple databases, including Medline, EMBASE, and PubMed. Specific search terms, including MESH terms, were 
chosen to identify relevant peer-reviewed articles, such as meta-analyses, systematic reviews, and randomized controlled 
trials. The identified literature was then critically evaluated and graded using the United States Preventive Services Task 
Force (USPSTF) criteria for evidence level (Table 1) and degree of recommendation (Table 2). Following evidence-based 
analysis, each team formulated initial consensus points, which were then submitted to the entire author group for review. 
Through an iterative process of consolidation and refinement, the statements were developed until final consensus was 
achieved among all authors.

All authors disclosed financial conflicts of interest and were asked to recuse themselves on any issue with which they 
have a relationship and competing interests. In cases where conflicted authors were the authority in an area, a 
nonconflicted author served as the ultimate editor of any submitted material. The purpose and scope of this paper are 
to serve as a resource for clinicians and payors in the interest of expanding awareness of the breadth of research in the 
field of PNS and expanding access to therapy for patients suffering from chronic pain, post-operative pain, or functional 
issues. The goal is to provide comprehensive, evidence-based recommendations on the appropriateness, efficacy, and 
safety of the reviewed treatments to guide clinical practice as well as practical guidance on billing and payor coverage.

Table 1 Hierarchy of Studies by the Type of Design (U.S. Preventive Services Task Force)

Hierarchy of Studies by the Type of Design (U.S. Preventive Services Task Force)

Evidence Level Study Type

I At least 1 controlled and randomized clinic trial, properly designed

II–I Well-designed, controlled, nonrandomized clinical trials
II-2 Cohort or case studies and well-designed controls, preferable multicenter

II-3 Multiple series compared over time, with or without intervention, and surprising results in noncontrolled experiences

III Clinical experience-based opinions, descriptive studies, clinical observations, or reports of expert committee

Notes: Adapted from Am J Prev Med, volume 20 (3 Suppl). Harris RP, Helfand M, Woolf SH, et al. Current Methods of the US Preventive Services Task Force: a Review of the 
Process. 21–35, copyright 2001, with permission from Elsevier.4
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Physiology
Neuromodulation systems, such as peripheral nerve stimulation (PNS), utilize electricity to modulate nerves, altering the 
transmission of pain signals to the brain. In the case of PNS, a peripheral nerve is targeted to alleviate peripheral 
neuropathic pain. Following injury, an inflammatory cascade activates pro-inflammatory cytokines and neuropeptides 
that heighten nociceptive afferents’ excitability, sensitizing dorsal horn neurons and diminishing inhibitory transmission. 
This exacerbates pain transmission to the sensory cortex, altering pain representation and sensory processing.5,6 

Abnormal glial activation, ectopic firing, and interneuron excitation contribute to persistent neural hyper-excitability 
across peripheral, spinal, and cranial levels. Chemical and environmental shifts can induce prolonged nociception, 
triggering chemical and structural transformations at the spinal and supraspinal levels, culminating in a chronic 
neuropathic pain state.7 Thus, peripheral and central sensitization are likely involved in the development of chronic 
neuropathic pain syndromes post-nerve dysfunction.8

The exact mechanism of action for PNS is uncertain. Several theories implicate central nervous system involvement, 
while others propose peripheral mechanisms, including stimulation conduction block in afferent fibers. Understanding 
neuropathic pathophysiologic mechanisms involving inflammatory cascades, changes in neural transmission, and cerebral 
vascular changes is crucial for effective pain management.9 Ongoing research into peripheral nerve stimulation 
mechanisms holds promise to improve peripheral neuropathic pain relief and expand upon indications for use.

Mechanism of Action
Gate Control Theory
The process of electrical nerve modulation, rooted in the “gate control theory”, remains incompletely understood.10 

Proposed by Melzack and Wall in 1965, this theory suggests that the analgesic effects of PNS may arise from both central 
and peripheral mechanisms.10 Stimulating low-threshold, large-diameter A-beta fibers with non-painful stimuli activates 
inhibitory interneurons, suppressing conduction and discharge in nociceptive A-delta and C nerve fibers within the dorsal 
horn, impeding their transmission to the central cortex.11 By stimulating A-beta fibers near C fibers, the “gate” in the 
dorsal horn of the spinal cord can be closed, halting the transmission of painful signals.11 However, alternative theories 
propose various mechanisms for PNS-induced pain relief, including membrane depolarization blockade, reduced excita
tion of nociceptors, and suppression of dorsal horn activity.12

Local Chemical and Neurotransmitter Effects
Animal studies suggest the involvement of serotonergic, GABAergic, and glycinergic pathways in the analgesic effects of 
PNS.13,14 PNS regulates the local neural environment by affecting endogenous opioid activity, glutamate, and aspartate 
signaling pathways, as well as decreasing neurotransmitters, endorphins, and inflammatory mediators, impacting their 
concentrations and efficacy.15,16 It is important to note that these mechanisms depend on the type of nerve, type of 
stimulation, and type of condition being treated.17

Table 2 Meaning of Recommendation Degrees (U.S. Preventive Services Task Force)

Meaning of Recommendation Degrees (U.S. Preventive Services Task Force)

Degree of 
Recommendation

Meaning

A Extremely recommendable (good evidence that the measure is effective and that benefits outweigh the harms)
B Recommendable (at least moderate evidence that the measure is effective and that benefits exceed harms)

C Neither recommendable nor inadvisable (at least moderate evidence that the measure is effective, but benefits are similar 

to harms and a general recommendation cannot be justified)
D Inadvisable (at least moderate evidence that the measure is ineffective or that the harms exceed the benefits)

I Insufficient, low-quality, or contradictory evidence; the balance between benefit and harms cannot be determined

Notes: Adapted from Am J Prev Med, volume 20 (3 Suppl). Harris RP, Helfand M, Woolf SH, et al. Current Methods of the US Preventive Services Task Force: a Review of the 
Process. 21–35, copyright 2001, with permission from Elsevier.4
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Opioid responses via the enkephalin-delta opioid receptor pathway have been identified in transcutaneous electrical 
nerve stimulation (TENS) and may be implicated in PNS as well.18,19 Anti-inflammatory effects of PNS have also been 
proposed.20 In human studies, excitation failure of A and C fibers occurs through repeated electrical stimulation.21

Peripherally Induced Reconditioning of CNS
PNS may alleviate central sensitization and hyperalgesia by diminishing excessive peripheral nociceptive activity, 
inhibiting wide dynamic range neurons, and decreasing Aβ fiber-induced activity.13 GABAergic and glycinergic activity 
augmentation, along with serotonin and dopamine metabolite alterations, may subsequently occur at the spinal level.12,14 

Substance P and CGRP level variations might alter central pain signaling.22 Additionally, it has been proposed that 
peripheral reconditioning of the central nervous system can occur through prolonged alterations in central plasticity in 
neuropathic pain states.22

Consensus Guideline 1: The mechanism of action (MOA) of Peripheral Nerve Stimulation (PNS) is complex. It includes 
modulation of local transmission of pain signals, inhibition of local A and C fibers with repeated stimulation, impact on local 
inflammatory mediators, endogenous opioids and neurotransmitters, gate control theory, and peripherally induced recondition
ing of the central nervous system. Future research will help further describe the MOA of PNS. 

PNS Device
PNS is an established treatment approach that has been successfully used for the management of a wide variety of disease 
states, including motor dysfunction and chronic pain. Although the first series of patients with neuropathic pain treated 
with PNS was published by Wall and Sweet in early 1967,23 the first documented use of this approach was even earlier, 
when C.H. Shelden used high-frequency PNS (14 kHz) for treatment of neuropathic facial pain in 196224 (Figure 1). 
Since that time, PNS has been utilized all over the world as a unique modality for the treatment of various neuropathic 
pain conditions, with complex regional pain syndromes (CRPS) initially being the most prevalent condition.25 For the 
first three decades of PNS clinical use, the application of PNS electrodes required surgical exposure of the stimulated 
nerves, limiting access to this modality only to those who possessed significant surgical expertise.26–28 The situation 
changed dramatically after the percutaneous PNS technique was introduced by Weiner and Reed in 1999,29 making it 
available to pain specialists from non-surgical backgrounds and significantly increasing the utilization of this therapy.

The lack of percutaneous, FDA-approved PNS devices hampered the widespread acceptance of PNS as a pain- 
relieving treatment modality.29 Over the last decade, a multitude of well-designed clinical studies with the use of novel 
dedicated devices30–32 paved the way for multiple FDA approvals. The recent surge of technological advances and 
regulatory approvals marked a new era of PNS in the treatment of pain, where it quickly became a globally accepted part 
of the mainstream neuromodulation armamentarium.32–34 PNS is a recognized component of the educational neuromo
dulation curriculum endorsed by professional pain societies.35 In 2024, the American Medical Association (AMA) 
revised CPT codes to address industry confusion regarding the distinction between systems and physician work 
performed.

Mechanisms of Stimulation
Waveform Background
Stimulation waveforms are a pattern of delivery of electrical energy with the goal of excitation or inhibition of Aα/ 
β afferent fibers to modulate pain. Nociceptive A and C fibers exhibit varying responses to electrical stimulation based on 

Figure 1 History of PNS The history of PNS from inception to advancements to coding.
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their diameters. Larger diameter fibers require lower intensity stimulation for activation than smaller diameter fibers. This 
phenomenon suggests using titrated stimulation intensities to primarily activate large diameter Aα/β fibers while avoiding 
the activation of small-diameter nociceptive fibers through a gating mechanism.36,37 One of the challenges of PNS is that 
leads are often placed adjacent to mixed motor-sensory nerves, so fiber selectivity is paramount.

In many cases, sensory afferents are the primary targets for sensory stimulation. In certain instances, the emphasis is 
placed on targeting motor efferent nerves to elicit muscular contraction. The treatment strategy for core muscle atrophy, 
which centers on stimulating the multifidus muscle in the lumbar spine, has consistently reflected this approach.38 

Understanding the stimulation and waveform characteristics of each commercially available PNS device is vital due to 
their complex programming parameters and nuances.

Low-Frequency Stimulation
Low-frequency stimulation (20 Hz) has been employed in PNS for multiple conditions, including hemiplegic shoulder 
(HSP) and low back pain. When preferentially applied to mixed motor-sensory nerves, low-frequency stimulation stimu
lates motor efferent nerves, causing muscular contraction. When applied to the axillary nerve in the shoulder, resulting 
deltoid muscle contraction may help decrease pain in patients with HSP.39 Although this form of stimulation has shown 
to have durable pain relief even with temporary therapy courses, subluxation of the glenohumeral joint is not reduced 
long-term.40 Similarly, low-frequency stimulation of the medial branch nerves in the lumbar spine has decreased low 
back pain in patients who have failed conservative therapies.41,42 Increasingly, there is an understanding that the 
multifidus muscle plays a vital role in lumbar stability, and restoring function and decreasing inhibition of this muscle 
in chronic pain states can be achieved with motor stimulation.43 In a recent randomized, sham-controlled, double-blinded 
trial, patients in the treatment group received a stimulation frequency of 20 Hz, a pulse width of 214 µs, with participant- 
specific pulse amplitudes to elicit multifidus contractions for 10 seconds twice per minute during the stimulation session.

Mid-Range Stimulation
Mid-range stimulation (20–100 Hz) has traditionally been the therapy window for PNS devices, as this range preferen
tially targets afferent fibers, giving the patient a perception of paresthesia or vibration. This stimulation range primarily 
activates large diameter Aα/β fibers while avoiding activating small-diameter nociceptive fibers (C and Ad).36 Recent 
studies on paresthesia-based, sensory peripheral stimulation have explored waveform parameters. In 2016, Deer et al 
conducted a prospective, multicenter, randomized, double-blinded, partial crossover study on a permanent PNS system. 
The typical settings used in this study included a pulse width of 200 µs, a pulse frequency of 100 Hz, and an amplitude 
set to induce paresthesia.31 A prospective precursor study by Wilson et al involving eight patients examined PNS 
targeting the median nerve. The study used lower frequency settings, including amplitude (≤ 80 mA), pulse width (100 to 
300 µs), and pulse frequency (20 to 45 Hz). Patients in this study reported experiencing paresthesia in the hand or 
distribution of the median nerve during the stimulation.44

High-Frequency and Ultra High-Frequency Stimulation
High-frequency (>1500 Hz) and ultra-high-frequency (>500,000 Hz) therapies are still under investigation. Because of 
their association with pain relief and the absence of paresthesia, it is of great interest to some investigators. Early data on 
high-frequency stimulation (5000–1000 Hz) in lower extremity amputees has been promising.45,46 Additionally, a 
recent study by Abd-Elsayed and Moghim demonstrated the effectiveness of high-frequency peripheral nerve stimulation 
(PNS) in treating chronic pain.34 The study involved 57 patients who received PNS treatment across various nerve 
targets. The results indicated successful pain management even 24 months post-procedure, in addition to a reduction in 
opioid medication. The treatment parameters included a pulse width of 32 us and a frequency of 1499 kHz, with varying 
amplitudes in on/off patterns. However, further research is needed to compare the benefits of these waveforms against 
other options.

Advanced Programming and Evolving Technologies
An analysis of nearly 84,000 PNS programs for over 5,300 patients from one device company indicates that lower 
frequencies (<100Hz) may not be typical for most patients using their device. Like SCS systems, complex programming 
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was deemed correlated with long-term PNS success in this analysis, with parameters including pulse widths of ≥500 µs 
and frequencies ≥500 Hz. Over 96% of the analysis’s commercial and ongoing RCT PNS programs utilized this 
approach. Notably, 58% utilized multi-area programming, and 39% employed frequencies ≥1,000 Hz. These findings 
highlight the need for PNS devices to offer diverse programming options to accommodate patient and nerve target 
variations. (Data Source: Nalu Medical). While this analysis was not designed to evaluate the efficacy of lower frequency 
parameters, it does indicate an ongoing reevaluation and evolution of advanced programming parameters and waveforms 
for PNS.

Consensus Guideline 2: Low and mid-range frequency settings can be utilized for motor, sensory, parasympathetic, and 
sympathetic stimulation, respectively, and are well-studied in the literature. High and ultra-high frequency and high pulse 
width stimulation have each been shown to be associated with promising outcomes and should be the focus of further research. 

Definition: Peripheral Nerve Stimulation
It is crucial to differentiate direct Peripheral Nerve Stimulation (PNS), the focus of this paper, from the starkly different 
indirect Peripheral Nerve Field Stimulation (PNfS), indirect Percutaneous Electrical Nerve Stimulation (PENS), and 
Transcutaneous Electrical Nerve Stimulation (TENS) for clarity in clinical practice, alignment of understanding, and 
interpretation of evolving research.33 PNS directly stimulates specific nerves and requires specialized knowledge of 
peripheral nervous system anatomy for successful lead placement using image guidance (fluoroscopy or ultrasound) and 
advanced procedural, often surgical, skills to avoid lead fracture and migration.

PNfS involves placing leads in subcutaneous tissues to diffuse stimulation across the painful loci, enhancing blood 
flow, blocking cell depolarization, and raising the nociceptive threshold.47 PENS temporarily stimulates subcutaneous 
nerves. TENS relieves pain through skin electrodes without specific nerve stimulation.48 Payors must differentiate PNS 
as a unique modality from these other nonspecific stimulation treatments, as this is delineated in the existing peer- 
reviewed evidence base.

Consensus Guideline 3: PNS should be clearly differentiated in payor policies from the divergent and unrelated therapies of 
peripheral nerve field stimulation (PNfS), indirect percutaneous electrical stimulation (PENS), and transcutaneous electrical 
nerve stimulation (TENS). Peer-reviewed literature has extensively differentiated PNS from these treatments. 

Magnetic Nerve Stimulation
Magnetic fields (MFs) have been suggested as a potential treatment option for generalized myofascial pain syndromes 
and rheumatoid arthritis.49 In their review, Fan et al examined 28 studies exploring the analgesic effects of static 
magnetic fields (SMFs) on humans and mice.50 Findings indicate that 64% of human and all mice studies reported 
positive effects of SMFs on pain relief, with factors such as SMF intensity, treatment duration, and pain type influencing 
outcomes. SMFs are not considered a form of PNS.

Magnetic peripheral nerve stimulation (mPNS), on the other hand, is FDA-approved to treat chronic and intractable 
post-traumatic and post-surgical pain.51 mPNS consists of applying biphasic, time-varying magnetic pulses at a 
frequency of 0.5 Hz to induce electrical fields in the nerve bundles in the center of the waveform. These pulses generate 
action potentials in the ascending and descending pathways of the peripheral and central nervous systems.36 The 
recruitment ratio of A-beta (sensory) to A-delta (pain fibers) is 3:1 with traditional PNS, whereas it is 9:1 with 
mPNS.51 Kapural et al randomized 65 subjects to mPNS vs conventional medical management (CMM) and observed 
that 71% of subjects had at least 50% pain relief in the mPNS as opposed to 13% in the CMM arm.

Strategies for Peripheral Nerve Stimulation
Nerve Blocks
A single shot low volume (3–5 mL) local anesthetic nerve block using 2% lidocaine or 0.5% bupivacaine before PNS 
may be used to isolate a neural target. It may also help to assess patient anatomy and identify the optimal stimulation 
target nerve if multiple nerves are innervating the dermatome. For example, the scrotum or testicular region is innervated 
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by pudendal, ilioinguinal, genitofemoral, and posterior femoral cutaneous nerves. If a block is not performed, the 
dermatomal innervation is determined via clinical evaluation, specifically history and physical examination, when 
selecting a nerve target for PNS. A recent review evaluating diagnostic blocks and PNS outcomes at 3 and 6 months 
found no outcome difference when nerve blocks were performed before the PNS implant.52 This may be due to the 
differences in mechanism of action as local anesthetic reversibly binds to Na+ channels while stimulation activates motor 
or sensory fibers.53,54 However, no definitive mechanistic evidence exists to explain the lack of predictive value of nerve 
blocks for PNS.

Consensus Guideline 4: While nerve blocks may be utilized in the early diagnostic and therapeutic phases of patient care, the 
literature does not support their prognostic value in predicting response to a PNS trial. 

Short Term PNS
In 2018, a single and dual lead peripheral nerve stimulation system was FDA-approved as indwelling therapy for up to 60 
days for pain control. The system consists of a percutaneous electrode (micro lead- flexible, helically coiled) placed in 
proximity to the target peripheral nerve and connected to a wearable external pulse generator (www.accessdata.fda.gov/ 
cdrh_docs/pdf18/K181422.pdf). This 60-day therapy is intended to supplant the “conventional trial followed by perma
nent implantation” approach. Many studies demonstrate continued pain reduction and clinical improvement beyond the 
60 days of percutaneous stimulation treatment.55,56

Trial and Permanent Implantation of PNS
Permanent PNS systems are similar to SCS in that patients undergo a temporary trial, typically about one week, followed 
by a permanent implant if the trial is successful. Patients with chronic pain due to peripheral neuropathies often undergo 
targeted peripheral nerve blocks to help identify the stimulation target before a temporary PNS trial is performed, 
whereby a percutaneous lead is placed near the targeted nerve. A permanent system is implanted after a trial period of 
device utilization if the patient experiences satisfactory relief (>50% improvement in pain). Various nuances between 
device manufacturers dictate modifications to device placement for permanent implantation.

Technology and Device Design
Lead Design
The design of peripheral nerve stimulation (PNS) leads has evolved to optimize efficacy, durability, and patient comfort. 
Modern PNS leads encompass several key design elements to enhance performance and patient outcomes. A few crucial 
aspects are lead size, shape, and profile. Traditional designs often featured cylindrical leads with multiple contacts 
incorporated into the body of the lead. Still, newer iterations employ innovations such as open helical-coil designs with 
barbed singular contacts at the end of the lead. This has offered the advantage of lower infection rates (0.03 vs 0.83 per 
1000 indwelling days for coiled vs non-coiled leads),57 due to several factors including a small skin-to-lead interface 
(0.3mm diameter), the ability of the lead to expand and compress in response to movement of the body part in which it is 
implanted, and fibrotic ingrowth into the coil potentially creating a bacteriostatic seal albeit with the qualifier that these 
coiled leads are intended for 60-day placement, not permanent implantation.58

These monopolar leads differ significantly from traditional multiple-contact arrays. When combined with a relatively 
narrow pulse width, the former allows for remote placement of the stimulating contact away from the target nerve to 
better select for A-beta fiber activation.59 The latter allows for more complex stimulation patterns using bipoles and 
guarded cathode configurations. This has implications for the placement of the lead relative to the target nerve, 
accommodating both perpendicular and parallel implant orientations.

Lead anchoring mechanisms are pivotal in maintaining lead stability and minimizing migration, one of the most 
common complications of early peripheral nerve stimulator implants. Recent innovations include anchoring sleeves or 
cuffs designed to secure the lead within surrounding tissues, reducing the likelihood of displacement.60 Additionally, lead 
fixation techniques utilizing barbs or tines enhance anchoring for permanently implanted devices without compromising 
flexibility or patient comfort.61 These features reduce or eliminate the need for separate anchors in many instances. 
However, granulation around the tines makes removal difficult in some cases and may lend toward lead fracture during 
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explant. Non-tined leads are invariably used for peripheral nerve stimulation trials due to their ease of withdrawal. New 
technology allows for injectable electrodes composed of an in-body curing polymer/metal composite, though still in the 
early stages of human testing.62 Newer revisions of the technology utilize a platinum-iridium microwire rather than a 
curing polymer to facilitate explantation.63

Integration of wireless communication capabilities represents a cutting-edge innovation in PNS lead design. By 
incorporating a receiver into the body of the stimulator array, wireless-enabled leads eliminate the need for percutaneous 
extensions and physically connected external pulse generators, offering flexibility and convenience for patients in respect 
to implant burden. Uncoupled external batteries with internally implanted generators are another strategy (See Figure 2).

Commercially available, permanent systems include Nalu Medical (Carlsbad, CA), StimRouter (Bioventus, Durham, 
NC), and Curonix (Pompano, FL). These systems have FDA approval for pain management in adults with severe, 
intractable chronic pain of peripheral nerve origin.33 The StimRouter system has a receiver, electrodes, and anchoring 
mechanism (in the form of tines), which is implanted via a test probe using image guidance. The lead is 15 cm long, 
1.2 mm in diameter, and has three stimulating electrodes. The lead is powered by an external pulse transmitter and 
controlled by a patient programmer (a handheld remote-control device).31

The Nalu system consists of a lead with electrodes (4 or 8 contacts, tined or untined) and a battery-free miniaturized 
implantable pulse generator (micro-IPG) that can accommodate one or two leads. It is powered wirelessly by an external 
therapy disc and controlled with a smartphone app (Nalu-Product-Catalog-MKT-400005-Rev-A.pdf). An advantage of 
the Nalu system is the implantation of a micro internal pulse generator and the ability to communicate bi-directionally 
with the internal device. The Curonix Freedom® Peripheral Nerve Stimulator (PNS) System (curonix.com) has an 
implanted electrode array (4 or 8 contacts), an implanted receiver, an external transmitter assembly, and a wearable 
accessory. The system is comprised of a two-component implant that the physician connects during the procedure. As 
with other implanted PNS, the physician must also create a pocket for the Curonix system. The Curonix implanted 
receiver is a coiled wire that is connected to the implanted lead. The system is fully programmable and powered by high- 
frequency electromagnetic coupling (HF-EMC). The HF-EMC technology delivers power and data at significant range 
and depth into the body. HF-EMC also accommodates individual patient wearable needs by maintaining power to the 
system through clothing without jeopardizing connectivity. StimRouter lacks a trial option among these systems, whereas 
Nalu Medical and Curonix offer trial capability. A trial can assist in appropriately selecting patients and introducing them 
to the therapy’s process. A permanent implant can be considered if patients experience satisfactory pain relief during the 
trial period.33 Additionally, many payors mandate a trial before permanent implantation.

Pulse Generation
Generator technology has evolved significantly in the past decade. Several generator options are now specific to PNS, 
including traditional implantable, external, and hybrid decoupled systems. Traditional implantable internal pulse gen
erators (IPGs) rely on a hardwired connection between lead(s) and IPG through a ported interface and historically 
represent the majority of PNS use. Previously, spinal cord stimulator (SCS) IPGs were adapted for use with PNS; 
however, due to their large size, they were not ideally suited to the periphery. More recently, externally powered and 

Figure 2 Commercially Available PNS Systems Examples of commercially available PNS leads and associated hardware.
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hybrid decoupled systems were introduced, thus decreasing the size of surgical implants. There are three types of 
externally powered systems that are commercially available. One, the first described by Yu et al,64 consists of partially 
implanted leads ported to an external generator.

In contrast, the second, as described by Abd-Elsayed and Moghim,34 is composed of a fully implanted lead with a 
receiver wire that communicates with a rechargeable generator attached to a transmitting antenna via high-frequency 
electromagnetic coupling technology. The third of these systems features a fully implanted lead with an integrated 
receiver that communicates via elective field conduction with an external generator, as described by Deer and colleagues 
in 2010.44 Finally, a hybrid system featuring fully implanted lead arrays directly ported to a micro-IPG decoupled from 
an external battery, as detailed by Kalia et al,65 features near-field magnetic induction delivering power from the external 
battery to the IPG.

Consensus Guideline 5: Given the wide variability between implantable, external, and hybrid decoupled PNS systems, as well 
as the rapid pace of innovation in the field, payor policies should defer to shared medical decision making by the treating 
physician and patient to maximize patient satisfaction, safety and efficacy across diverse clinical scenarios when selecting a 
PNS platform. 

MRI Conditionality
Patients with chronic pain may require advanced imaging for a multitude of reasons. Magnetic resonance imaging (MRI) 
is limited due to foreign ferromagnetic materials in the body of PNS components. The current PNS landscape is rich with 
various device options, each with its limitations regarding MRI. These limitations can be summarized here but may 
depend on specific details such as lead location, number of leads, and IPG type, given the extensive testing required to 
deem each configuration MRI conditional (Table 3). MRI conditionality of PNS components is rapidly evolving, and 
clinicians are encouraged to regularly review updates from device manufacturers to determine the exact compatibility of 
particular device components.

Table 3 MRI Conditionality

Type Duration MRI Conditionality Pulse Generator Battery

Curonix Freedom 4 PNS (1) Permanent MRI Conditional: Implanted Neurotransmitter 
1.5T and 3T Whole body 

MR unsafe: External Transmitter

Internal External

Curonix Freedom 8 Permanent MRI Conditional: Implanted Neurotransmitter 

1.5T Whole body 

MR unsafe: External Transmitter

Internal External

Nalu (2) Temporary 30d 

Permanent

MRI Conditional No external 

1.5–3T Dependent on IPG, lead, and nerve target factors

Internal External

Sprint (3) * Temporary 60d MR Unsafe 

MR Conditional: 1.5-3T with retained fragments66

External External

StimRouter (4) Permanent MRI Conditional 

No external 
1.5–3T 

Lead 50 cm from center of MR bore and outside coil

External External

Notes: 1. Curonix webpage https://curonix.eu/about-us/mri-information, https://curonix.com/wp-content/uploads/2025/01/CX_Freedom-MRI-Guide_PROOF_11-1-1.pdf. 
2. Nalu MRI Safety Information, MA-000105-Rev-A.pdf 3. Sprint; *Sprint lead fractures are MRI conditional 1.5T. 
https://www.sprtherapeutics.com/physicians/mri-safety-information/. 4. Stimrouter https://stimrouter.com/physicians/mri-safety-following-stimrouter-implant/.
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Consensus Guideline 6: MRI conditionality, and the variability and complexity of determining MRI implications in the setting 
of various devices, lead targets, orientation and patient factors, results in the requirement for physicians to consider MRI 
implications in partnership with the patient when selecting a PNS platform. 

Technique Overview
Peripheral nerve stimulator (PNS) lead placement may be performed under ultrasound,67–69 or fluoroscopic guidance.70–73 

Ultrasound offers the advantage of directly visualizing the neural target and surrounding vasculature using an in-plane 
needle technique. However, the operator must be proficient in the basic principles of ultrasound, including velocity of 
propagation, attenuation, frequency, acoustic shadowing, angle of incidence, and relevant anatomy.74 A fluoroscopic- 
guided approach is reasonable when targeting nerves that reside in predictable, replicable locations along osseous targets. 
Imaging modalities may be combined for educational value, future reference for programming, to replicate lead placement 
for permanent implants, or as a guide for future revision procedures.

Ultrasound guidance is recommended whenever possible for brachial plexus (and its branches), axillary, suprascap
ular, median, ulnar, radial, intercostal, femoral, lateral femoral cutaneous, saphenous, sciatic, tibial, and common 
peroneal nerve lead placement.75,76 Nerves that are commonly targeted using fluoroscopic guidance include medial 
branch nerves (cervical, thoracic, and lumbar), cluneal (superior and medial), genicular,77 infrapatellar saphenous, and in 
some cases, suprascapular nerve. Multiple cadaveric studies have shown a predictable location for these nerves relative to 
bony landmarks with minimal risk for vascular trauma when utilizing fluoroscopic guidance.78,79 Ultrasound has also 
been used effectively for these targets.69,80

When utilizing ultrasound, the skin entry should be at least 2 cm to 4 cm distal to the probe to ensure adequate lead 
length implanted to mitigate the risk of lead migration. The trajectory of the stimulating probe should violate as few 
muscles as possible to reach the nerve, and intraoperative sensory or motor testing should be performed before lead 
securement. Patients may describe sensory stimulation as pressure, tingling, tapping, or buzzing. Cases of uncomfortable 
or overly intense sensory stimulation that cannot be resolved with decreased amplitude may be solved by moving the lead 
contacts further away from the targeted nerve. If unintentional motor contraction is noted when approaching a sensory 
nerve, the stimulating probe is likely intramuscular and should be repositioned. When implanting at a motor target, 
contraction can be visualized on ultrasound, and needle movement due to contraction is noted.

Monopolar systems disburse energy in a field, allowing for placement to be parallel or perpendicular to the nerve, 
whereas bipolar systems are optimally placed parallel to the nerve. If a simple bi-pole program does not provide an 
adequate field of stimulation, a guarded cathode configuration may be programmed to capture a larger area. A low- 
frequency program (12–30 hertz) will provide motor activation, whereas a higher frequency (≥100 hertz) will provide 
sensory activation. The decision to place a single or dual lead is influenced by the site of service (hospital outpatient 
versus ambulatory surgery center), the number of dermatomes/nerves involved in pain transmission, and the size of the 
target nerve. When placing leads near large, mobile joints, care must be taken not to cross the joint line to mitigate the 
risk of lead fracture.

Consensus Guideline 7: Most PNS anatomic targets can be easily identified and accessed using ultrasound or fluoroscopic 
guidance while some targets may be preferentially identified using one modality or the other. Multiple factors including 
equipment availability and physician preference with imaging modalities may dictate an optimal approach for each case. Thus, 
payor policies should be inclusive of multiple approaches permitting physician selection of appropriate imaging guidance during 
PNS placement. 

Anesthetic for Trial and Implant and Sensory Testing
The approach to PNS implants varies based on the targeted nerve, imaging modality, and preferred position (Table 4). 
Intraoperative testing is an essential tool in ensuring proximity to the target nerve. It is recommended to avoid injection 
of local anesthetic deep and proximal to the target nerve until sensory and/or motor testing is completed. Every 
manufacturer has a different testing paradigm, but the principle is the same: if neural activation is seen in a relatively 
low amplitude or predefined stimulation setting, the lead may be too close or intraneural and should be withdrawn. If the 
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Table 4 Recommended Approach by Nerve Target

Nerve Imaging Patient Position Approach Landmark

Suprascapular US or 
Fluoroscopic

Sitting (± beach chair) or prone 
with pillows underneath the 
chest

Ultrasound-Transducer in a coronal oblique orientation over the posterior shoulder, parallel to the lateral third of the 
scapular spine. Tilt the probe to identify the floor of the supraspinous fossa deep to the trapezius and supraspinatus 
muscles. The suprascapular notch is anterior to the fossa where the nerve and artery traverse. Insert the needle in- 
plane and medial to lateral direction until tip contacts the bone.

Suprascapular notch

Axillary US or 
Fluoroscopic

Sitting or prone Ultrasound-transducer in a sagittal orientation over the posterior aspect of the upper arm midway between the 
acromion and the axillary fold. Slide proximal to distal until the neck of the humerus is visualized, adjust tilt until 
posterior circumflex humoral artery is visualized between teres minor, deltoid and triceps, superficial to the bone at 
the quadrangular space. Needle can be inserted in-plane or out of plane.

Humeral neck

Medial branches 
(C/T/L spine)

Fluoroscopic Prone For cervical placement identify the articular pillars and target lamina using A/P fluoroscopy. Start 2 to 4 levels below 
the target level to avoid the neck crease. Ideal entry at C7 or C6. Stay over bone until contact is made with the lamina. 
Thoracic/Lumbar- needle placement may be in trajectory view, cephalad to caudal or caudal to cephalad. Advance until 
contact is made with the lamina along the inferior medial aspect of the pedicle.

Lamina

Cluneal 
(superior, 
middle, lateral)

US or 
Fluoroscopic

Prone Fluoroscopic- contralateral oblique roughly 20 degrees for trajectory view targeting the iliac crest for superior cluneal 
nerve, and the lateral margin of S1/S2 for middle cluneal nerve. Entry is based on patient ergonomics and preference 
for external power source. Avoiding implantation over future spinal intervention sites by staying lateral or below the 
beltline should be considered.

Posterior superior iliac spine and 
dorsal sacrum

Femoral US Supine, leg extended and slightly 
externally rotated

Transducer is placed in transverse orientation over the femoral crease until the femoral nerve, artery and vein are 
visualized. Insert the needle in-plane in a lateral to medial direction below the fascia iliaca, lateral to the femoral nerve

Fascia iliaca superiorly, sartorius 
muscle superolateral, iliacus 
inferior

Lateral femoral 
cutaneous

US Supine, leg extended Transducer is placed in a transverse orientation distal to the anterior superior iliac spine to identify the sartorius 
muscle. The nerve is a very small hypoechoic structure located between the sartorius and tensor fascia lata muscle and 
is superficial. In patients with low BMI, a parallel approach to the nerve may be necessary.

Sartorius muscle medially, tensor 
fascia latae laterally

Saphenous US Supine with leg extended and 
externally rotated

Transducer in transverse orientation in the middle third of the thigh. Scan proximally and distally to locate the medial 
border of the sartorius muscle where it meets the medial border of the adductor longest muscle. The femoral artery, 
vein and saphenous nerve are located below the sartorius muscle.

Sartorius muscle superior, vastus 
medialis laterally, and adductor 
longus medially

Genicular US or 
Fluoroscopic

Supine with leg extended Ultrasound-transducer positioned along the distal femur, the probe scanned medially to locate the superior medial 
genicular artery and nerve. The probe is then positioned along the lateral margin of the distal femur to locate the 
superior lateral genicular artery a nerve. Similarly the inferomedial genicular artery and nerve is located below the 
knee along the proximal tibia.

Distal metaphysis and epicondyle 
junction

Infrapatellar 
saphenous

Fluoroscopic Supine with leg extended Anterior posterior fluoroscopic guidance is used to locate the medial aspect proximal Tibia. The lead is advanced 
cephalad to caudad.

Medial condyle of tibia, medial 
shaft of tibia

Sciatic (tibial or 
common 
peroneal)

US Supine with bump under foot, 
lateral or prone

Transducer placed in transverse orientation at the popliteal fossa crease. The probe tilted caudally to optimize the 
popliteal artery, vein, tibial nerve, common peroneal nerve. The probe is advanced cephalad 3 to 5 centimeters until 
the bifurcation of the sciatic nerve is visualized. An alternative approach (particularly in amputees) is the subgluteal 
approach as the nerve traverses beneath the biceps femoris muscle.

Biceps femoris laterally, 
semitendinosus medially
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energy required to activate the nerve is high, the electrode should be advanced closer to the nerve. SPR Therapeutics 
recommends lead placement approximately 1 cm distal to the target nerve for robust activation of A-beta fibers. SPR also 
defines their ideal stimulation window between an intensity of 20–70 on their programmer. Nalu, Bioventus, Curonix, 
and other manufacturers conduct testing in milliamps with an optimal stimulation window between 0.5–2.0 mA.

Most permanent PNS leads have tines to mitigate the risk of lead migration. It is essential to ensure satisfactory 
sensory and/or motor testing before deploying the tined portion of the lead. Due to this requirement, the PNS trial should 
be completed with local anesthetic and, at most, light sedation so that patients can provide feedback about stimulation 
efficacy. For implant, monitored anesthesia care can be considered with a period of light sedation for lead placement to 
confirm correct neural identification and appropriate target stimulation. Lower-concentration local anesthetic containing 
epinephrine can help avoid dense sensory block while providing hemostasis.

Nerve Regeneration and Low-Frequency Stimulation
Electrical stimulation (ES) of the peripheral nerves has been shown in animal models to improve axonal regeneration, 
myelination, and target reinnervation. The ES is conducted in a retrograde fashion to the soma of the neuron, which 
upregulates multiple genes associated with regeneration81,82 (Figure 3). The pro-regenerative effect of ES has also been 
shown in 4 human randomized clinical trials, including severe carpal tunnel syndrome, repair of injured digital nerves, 
spinal accessory nerve traction injury, and severe cubital tunnel syndrome.83–85 ES has also shown benefits in nerve 
transection and repair models, in isograft nerve repairs, traction injuries, and chronic compression injuries.83,84,86–88 

Initial animal studies found that brief electrical stimulation consisting of stimulation at 20 Hz for 1 hour was superior to 
higher frequency and/or longer duration in improving sensorimotor regeneration.89–93 Recent clinical studies in humans 
suggest that 10 minutes of ES is as effective as 1 hour of stimulation for nerve regeneration.81,86,88 Sequential ES may be 
superior to single-session ES for motor recovery, based on rat models.94

Figure 3 Nerve Regeneration Electrical stimulation proximal to the injury site stimulates the upregulation of RAG through a calcium-dependent mechanism. Increased 
expression of BDNF and trkB drives increased expression of cAMP which activates CREB to maximize the pro-regenerative axon phenotype, stimulating axonal sprouting 
and neuron survival. 
Notes: Reprinted from Juckett L, Saffari TM, Ormseth B, Senger JL, Moore AM. The effect of electrical stimulation on nerve regeneration following peripheral nerve injury. 
Biomolecules. 2022;12(12). Creative Commons.81 

Abbreviations: BDNF, brain derived neurotrophic factor; cAMP, cyclic adenosine monophosphate; CREB, cAMP response element binding protein; trkB, tyrosine receptor 
kinase B; pKA, phosphokinase A; GAP-43, growth-associated protein; MAPK, mitogen-activated protein kinase.
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Nerve Targets And Conditions
Efficacy of PNS
Multiple well-designed studies have explored the efficacy of PNS across a wide range of nerve targets and indications. 
The COMFORT randomized controlled trial consisted of two arms: patients in the active arm receiving PNS and 
conventional medical management (CMM) and patients in the control arm receiving CMM alone.95 Pain target areas 
included the shoulder, low back, knee, and foot/ankle. At 12 months, 87% of patients in the active arm had at least 50% 
pain relief, with the average pain relief being 69%, compared to the control arm, which had a responder rate of 3%, with 
average pain relief being 6% (Level 1, Grade A).

The confirmatory randomized controlled COMFORT 2 Trial used an identical protocol to allow for pooling of data 
between the two studies.96 Similar results were seen at 3 months in the COMFORT 2 subjects, with the active PNS group 
achieving an 80% responder rate (≥50% pain relief) and a 66% average pain reduction, compared to a 4% responder rate 
and 3% pain reduction in the control group receiving conventional medical management alone. These significant 
outcomes were sustained at 6 months, with the active arm maintaining a 79% responder rate and 64% pain relief 
(Level 1, Grade A).

Pooled data analysis of 250 subjects from the COMFORT and COMFORT 2 trials demonstrated a significant 
difference between the treatment groups at 3 months.96 The active arm, receiving peripheral nerve stimulation, had an 
81% responder rate with a 66% average pain reduction, compared to the control arm’s 4% responder rate and 4% pain 
reduction (p<0.001). These benefits proved to be durable, as the active arm maintained an 82% responder rate and 66% 
pain relief at the 6-month follow-up with 33% having at least 80% pain relief. Responder rates and pain relief were 
robust at the 6-month follow-up across the four treatment areas, low back, knee, foot/ankle, and shoulder, all with a 
strong safety profile (Level 1, Grade A).

Huntoon et al published a retrospective review of 6,160 patients following 60-day PNS.55 Seventy-one percent of 
patients (4,348/6,160) were responders with ≥ 50% pain relief and/or improvement in quality of life. Pain relief among 
responders averaged 63%. There were 38 different nerve targets within the population, and the responder rate and percent 
pain relief were relatively consistent across the multitude of pain indications and nerves (Level II-2, Grade A).

Consensus Guideline 8: The evidence for PNS independent of nerve target or pain indication is strong. Due to the broad array of 
studies, including randomized controlled trials and large retrospective studies in addition to smaller, more focused studies, the 
overall evidence is Level 1, Grade A. It is important to note that responder rate and average pain relief are clinically significant 
and consistent across a variety of pain indications and nerve targets including within studies that examined multiple targets. 

Upper Extremity
Shoulder pain is the third most common musculoskeletal complaint,97 with a median prevalence of 16% globally.98 

Innervation of the shoulder is predominantly from the axillary and suprascapular nerves, with a small contribution from 
the lateral pectoral nerve.99 Image guidance with either fluoroscopy or ultrasound can be used to target the suprascapular 
nerve deep to the transverse scapular ligament in the suprascapular notch or inferior to the spine of the scapula as it exits 
from the spinoglenoid notch. The axillary nerve can be targeted at the quadrangular space with ultrasound or via 
fluoroscopy at the posterior lateral aspect of the surgical neck of the humerus.99 There have been two randomized control 
trials for PNS of the shoulder, and both used a temporary PNS system to treat the axillary nerve with low-frequency 
motor stimulation at 12Hz in patients with post-stroke shoulder pain. Compared to the control group, the PNS groups 
showed clinically significant sustained pain relief at 3–12 months. There is Level 1 Grade B evidence for PNS for 
treatment of post-stroke shoulder pain.8,39,76,100,101

There are various observational studies, case reports/series for PNS for other upper extremity pain syndromes such as 
mononeuropathy, brachial plexopathy, complex regional pain syndrome, acute post-operative pain, and other shoulder 
pathologies (impingement syndrome, adhesive capsulitis, primary osteoarthritis, post-operative shoulder pain) – demon
strating modest to moderate pain relief, Level II-2 Grade B evidence.8,102–106 Ultrasound is conventionally used to place 
PNS at target nerves of the upper extremity to avoid neurovascular damage. The COMFORT and COMFORT 2 RCTs 
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demonstrated efficacy and safety for shoulder pain with a pooled 6-month responder rate of 74% and pain relief of 62% 
(p<0.001).95,96 (Level 1, Grade A)

Craniofacial Nerve Targets
The most common targets for craniofacial neuromodulation include the occipital nerve, supraorbital, and infraorbital 
branches of the trigeminal nerve, the supratrochlear nerve, the sphenopalatine ganglion (SPG), and the auriculotemporal 
nerve (Table 5). PNS may be utilized to manage chronic neuropathic facial pain and headache disorders. Given the 
limited tissue real estate and mobility of the craniofacial region, there may be an increased risk of skin erosion and 
increased lead migration or fracture, and an implanted pulse generator is often placed at the infraclavicular region.107 

Previous consensus recommendations support the consideration of neuromodulation for chronic craniofacial pain 
syndromes before long-term, long-acting opioid therapy107,108(Table 6).

Occipital Nerves
Occipital PNS has been employed to treat primary headache disorders, such as occipital neuralgia, cluster, paroxysmal 
hemicrania, and migraines refractory to conventional medical management.108 Traditionally, lead placement at the nuchal 
line using landmark or fluoroscopic techniques has been implemented to target the occipital nerve; however, advance
ments in high-resolution ultrasound have facilitated targeting the greater occipital nerve in the upper neck at C2.109 The 
summarized results of several randomized clinical studies investigating the safety and efficacy of occipital nerve 
stimulation for chronic headache management indicate positive outcomes.110–115 There is high-quality evidence for 
PNS of the occipital nerves for chronic migraines and low-quality evidence for occipital neuralgia, tension headaches, 
and cluster headaches.116

Trigeminal Nerve
PNS of the trigeminal nerve to treat craniofacial pain most commonly involves targeting terminal sensory branches such 
as the supraorbital, infraorbital, supratrochlear, and the auriculotemporal nerves.107 There is low-quality evidence for 

Table 5 Common Craniofacial PNS Targets and Indications

Target Nerve Condition

Occipital Migraine, Cluster Headache, Occipital Neuralgia, Paroxysmal Hemicrania

Supraorbital and infraorbital Trigeminal Neuropathy

Auriculotemporal Migraine, Trigeminal Neuropathy, Temporomandibular joint pain

Supratrochlear Migraine, Cluster Headache

Sphenopalatine ganglion Cluster Headache, Trigeminal Neuropathy, Paroxysmal Hemicrania

Notes: Data from Antony AB, Mazzola AJ, Dhaliwal GS, Hunter CW. Neurostimulation for the Treatment of Chronic 
Head and Facial Pain: A Literature Review. Pain Physician. 2019;22(5):447–477.108

Table 6 Quality of Evidence by Indication

Condition Recommendation

Migraine Level I, grade B, moderate quality evidence to recommend occipital nerve neurostimulation for migraine headache refractory to 
conservative management

Other craniofacial pain 
Trigeminal neuropathy

Level III, grade C, moderate evidence to recommend trigeminal nerve/branches (supraorbital, infraorbital, supratrochlear, 
auriculotemporal) neuromodulation for neuropathic craniofacial pain disorders

Cluster headache Level I, grade C, moderate evidence to recommend sphenopalatine ganglion neurostimulation treatment for cluster headache when 
noninvasive measures have failed
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supraorbital and supratrochlear nerve stimulation for trigeminal neuropathic pain or other craniofacial pain syndromes, 
with a few clinical studies reporting limited benefit.117–120 Low-quality evidence recommends infraorbital stimulation for 
trigeminal neuropathic pain and craniofacial pain, with three observational studies describing positive outcomes.116 

Limited evidence supports the use of auriculotemporal PNS for treating refractory head and jaw pain.117,121–124

Sphenopalatine Ganglion
The SPG is theorized to exert a pivotal role in the genesis of trigeminal autonomic cephalalgia, cluster headache, and 
paroxysmal hemicranias.125,126 There is limited evidence to support the use of SPG neurostimulation in chronic 
craniofacial pain, with only one randomized controlled study and a few case series.127–129 There is sparse literature to 
recommend SPG neuromodulation in idiopathic facial pain, trigeminal neuralgia, and paroxysmal hemicrania. Still, SPG 
neuromodulation combined with trigeminal PNS may play a role in treating cluster headaches in selected cases.108,126,130 

The evidence remains limited but promising for cluster headaches based on results from one high-quality study.128,131

Pudendal Nerve
The pudendal nerve originates from the second, third, and fourth sacral nerve roots and provides sensation to the anus, 
perineum, and genitals.132,133 Urologists have utilized peripheral nerve stimulation (PNS) targeting the pudendal and 
sacral nerves for treatment of voiding dysfunction and interstitial cystitis associated chronic pelvic pain for over a decade 
- Level I evidence, Grade B recommendation.134–137 These devices have been traditionally implanted through an ischial- 
rectal approach. Recently, pudendal nerve stimulation has been proposed as a means for the management of chronic 
pelvic pain in the field of pain medicine. Both ultrasound-guided and fluoroscopic-guided techniques have been proposed 
to minimize the risks of neurovascular injury, but large randomized control trials assessing efficacy and safety are 
lacking.138,139 Pudendal nerve PNS for chronic pelvic pain is Level II-3 evidence, Grade C recommendation.

Transverse Abdominal Plane (TAP)
The transverse abdominal plane (TAP) is located between the transversus abdominis and internal oblique muscles,140 and 
contains the thoracoabdominal nerves (arising from the seventh to eleventh intercostal, subcostal and first lumbar 
nerves)141 and ilioinguinal and iliohypogastric nerves in the lower abdominal quadrants.142 The thoracoabdominal nerves 
have been implicated as providing somatic sensation to the abdominal wall (between the T5-T12 dermatome).143 As 
such, nerves within the TAP have been targeted by nerve blocks to treat chronic somatic and neuropathic abdominal 
pain.144–147 Similarly, the ilioinguinal and iliohypogastric nerves have been targeted in the past for nerve blocks to treat 
somatic and neuropathic pain after inguinal herniorrhaphy.142 Recently, utilization of a percutaneous, ultrasound-guided 
technique has been explored to place peripheral nerve stimulation leads in this region for the management of chronic 
abdominal pain. However, further investigation is needed to validate the safety and efficacy of this modality.2 (Level II-3 
evidence, Grade C)

Low Back Pain
When considering modern PNS devices, chronic low back pain is probably the most well-studied PNS indication in the 
literature. Permanent devices targeting the multifidus muscle directly at the lumbar spine provide functional improvement 
in disability and prolonged pain relief in 5-year, longitudinal randomized trial data, Level I-A, Grade A.148 Furthermore, 
a direct target of the medial branch nerves innervating the multifidus muscle with temporary 60-day systems has shown 
efficacy beyond the treatment time. Prospective data supports that 60-day PNS treatment may lead to 12 months of 
30–50% pain relief in patients with and without a previous thermal ablation.149,150 Current literature suggests Level I-B, 
Grade B moderate evidence for PNS and low back pain syndromes, primarily related to heterogenicity of technique, 
device, and study population.151 In a health economic study, PNS provides significant cost savings compared to 
conventional interventional therapies for chronic low back pain over a year of treatment.152
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Cluneal Nerves
Targeting the cluneal nerves for treating iliolumbar or chronic low back pain syndromes has been described in the 
literature. The superior and middle cluneal nerves are commonly implicated as pain generators in the lower back, 
buttock, and posterior thigh distribution and are composed of the cutaneous branches of the lateral dorsal rami branches 
from T11 to S4.153 Evidence for this target consists of case reports and small series with promising results as well as two 
robust RCTs.34,95,96,154–156 The cluneal nerve was one of the primary targets within the COMFORT and COMFORT 2 
RCTs and demonstrated an 81% responder rate in the pooled cohort.95,96 (Level 1, Grade A)

Intercostal Nerves
The intercostal nerve innervates the skin and muscle of the thorax and part of the abdominal wall.69 These nerves can be 
targeted for treating rib pain, post-herpetic pain, and postsurgical pain. The neurovascular bundle runs inferior to the rib, 
deep to the intercostal muscle, and superficial to the pleura at each level. Case reports have shown the potential for this 
technique, especially for breast cancer treatment-related pain, post-herpetic neuralgia, and abdominal pain.157–159 A case 
series for treatment of focal mononeuropathy pain with 39 patients revealed that 78% noted improvement in their pain, 
and patients with intercostal PNS had a 40% improvement in activity.160 A retrospective review of 6,160 patients 
following 60-day PNS revealed consistent outcomes across a multitude of nerve targets, with a responder rate of 71% of 
patients having at least 50% pain relief or improvement in quality of life.55 Sub-analysis of 103 patients with intercostal 
nerve PNS revealed equivalent outcomes. (Level II-3, Grade B)

Ilioinguinal/Iliohypogastric Nerves
Ilioinguinal and Iliohypogastric peripheral nerve stimulation (PNS) for groin pain has been achieved via surgical 
implantation, ultrasound-guided, and anatomic placement and has been published in multiple case presentations. One 
surgical implantation of the paddle (iliohypogastric) and percutaneous (ilioinguinal) leads yielded 0/10 pain 1-year post- 
implantation.161 Another surgical implant (ilioinguinal) reported minimal pain at 3-months.162 Four cases were described 
in a published series using ultrasound-guided placement (ilioinguinal), of which two were 7-day trials with >85% pain 
relief.163 Other published cases yielded mixed results: one with >50% relief for 1 year and one without relief at 2 months 
post-implantation.161,164 Eight cases of anatomic placement (ilioinguinal, iliohypogastric) reported pain reduction by 
>50%, ranging from 1 month to 2 years.161,165–167 (Level II-3, Grade C)

Genitofemoral Nerve
Genitofemoral PNS for groin pain has also been described via anatomic, ultrasound-guided (USG), and surgical 
approaches. Three cases of anatomic placement with fluoroscopic confirmation reported 50–75% pain relief ranging 
from 1 to 5 months post-implantation.166–168 Under USG, one case reported >90% pain relief at 5 months post-op and 
improved physical functioning on the 12-item Short Form Survey.169 A retroperitoneal surgical approach, named the 
“sandwich technique”, reported >60% relief before losing efficacy from scar tissue formation and explant at 12 
months.161 Finally, one patient with genitofemoral PNS reported 50% relief at 1 year in a randomized control trial of 
10 kHz PNS.170 (Level II-3, Grade B)

Meralgia Paresthetica (Lateral Femoral Cutaneous Nerve)
Meralgia paresthetica is characterized by entrapment of the lateral femoral cutaneous nerve, originating from spinal 
levels L2-3 and often presenting with numbness, dysesthesia, and occasionally pain over the anterior thigh. Evidence is 
currently limited to case reports and one case series. One case report,171 demonstrated 100% pain reduction using a 60- 
day temporary stimulator (SPRINT) sustained at 12 months with discontinuation of gabapentin. Another case report,172 

described 80% relief at 3 months with a temporary device (SPRINT). One final case series (n=3),160 implanted a 
permanent peripheral nerve stimulator (Bioness Stimrouter) with an external generator and achieved 100% VAS 
improvement and 70% activity improvement. More extensive case series are necessary to assess long-term results for 
meralgia paresthetica PNS. (Level II-3, Grade B)
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Lower Extremity (Sciatic, Femoral, Saphenous Nerves)
Peripheral nerve stimulation has been applied to the femoral, sciatic, and saphenous nerves for managing nociceptive and 
neuropathic postoperative and chronic lower extremity pain. Femoral nerve PNS and sciatic nerve PNS are effective in a 
sham-controlled RCT managing immediate postoperative pain using temporary lead placement for 14 days and were 
effective in reducing opioid requirements and pain173 (Level 1, Grade A evidence). Other studies have demonstrated the 
use of PNS in postoperative pain management, improving recovery times and reducing opioid requirements.105 Femoral 
nerve PNS is a desirable target nerve for managing postoperative knee pain, particularly post ACL reconstruction.174 

Sciatic nerve stimulation has been used for postoperative pain after foot/ankle surgery. Unfortunately, knee and ankle 
pain can persist beyond the immediate postoperative period. Permanently implanted saphenous nerve stimulation has 
been used to treat persistent knee pain.175,176 Future studies will help better understand candidates for therapy and long- 
term success rates. (Level II-3, Grade B evidence)

Knee Pain
Peripheral nerve stimulation for knee pain can include the femoral, saphenous, and genicular nerves. Genicular nerves 
have long been the target of radiofrequency ablation for knee pain. PNS of the genicular nerves has been used for 
persistent postoperative knee pain and osteoarthritis in the absence of surgical intervention. A case report,177 of focal 
knee pain due to osteoarthritis showed successful treatment with temporary PNS of the superomedial genicular nerve and 
saphenous nerve, but the long-term benefit was not established. Several studies have applied genicular nerve PNS to 
patients with chronic pain after total knee arthroplasty or patients unable or unwilling to undergo knee replacement; PNS 
may be considered in temporary form for pain management. Small case series have shown limited success.178 A 
systematic review,179 identified 7 studies limited to case reports and series that showed improved pain and functionality; 
however, there was variability in technique workup and included both temporary and permanent devices. The 
COMFORT and COMFORT 2 RCTs demonstrated a pooled responder rate of 96% for subjects being treated for chronic 
knee pain.95,96 By convention, lead placement for PNS should not span across a joint due to the risk of lead migration and 
lead fracture. Both fluoroscopic and ultrasound-based techniques have been used for genicular PNS, targeting the 
superior medial and superior lateral genicular nerves. Future studies are necessary to help characterize responders and 
best practice models. (Level I, Grade A evidence)

Ankle/Foot Pain
As with postoperative knee pain management, sciatic nerve PNS is effective in the immediate postoperative period in 
reducing opioid requirements and pain in a randomized, sham-controlled trial173 (Level I, Grade A evidence). The ease 
and availability of ultrasound have allowed for better nerve visualization. Commonly targeted nerves for ankle pain 
include the sural, superficial peroneal, and posterior tibial nerves. Tarsal tunnel syndrome results in tendinous compres
sion of the posterior tibial nerve posterior to the medial malleolus. The superficial peroneal and sural nerves can be 
injured in ankle fractures and operative intervention.180 In a case series of permanent wireless PNS placement for 
peripheral neuralgias, one patient was treated successfully with PNS of the sural nerve.167 Limited evidence exists for 
PNS of the nerves of the ankle. Some evidence suggests the utility of stimulating the sciatic nerve in postoperative pain 
management for ankle surgery.173 The COMFORT and COMFORT 2 RCTs demonstrated durable benefit for ankle and 
foot pain with pooled data demonstrating a 75% responder rate and 65% pain relief at 6 months (p<0.001).95,96 (Level 1, 
Grade A evidence)

Neuropathic Pain
Peripheral neuropathy may be present in up to 12% of the population and as high as 30% in older demographics.181 A 
retrospective study of PNS for neuropathic pain in 63 patients found that NRS decreased from 7.24 at baseline to 3.43 at 
2–3 week follow-up. Among the 24 patients who completed long-term follow-ups of 8 months or longer, 79% had pain 
relief of ≥50%. PNS for chemotherapy-induced peripheral neuropathy (CIPN) is an area of recent study, and a systematic 
review found that there is some evidence supporting PNS for CIPN based on a study with 50 subjects182 (Level II-3, 
Grade B evidence).
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Studies evaluating PNS for lower extremity neuropathic pain have focused primarily on mononeuropathies, which is 
appropriate given the focal nature of PNS treatment. One potential target application is peripheral small fiber neuropathy; 
however, no studies currently validate PNS for this indication. Spinal cord stimulation has seen wide implementation and 
innovation, such as variable waveforms and hardware optimization. PNS can experience similar growth as new 
indications are evaluated and specific nerve targets are explored.183

Complex Regional Pain Syndrome
The literature describing the use of PNS for CRPS encompasses the treatment of both upper and lower extremity CRPS 
with targets including the sciatic, common peroneal, tibial, femoral, lateral femoral cutaneous, saphenous, radial, median, 
and ulnar nerves.184 In a case series of 3 patients with CRPS Type I affecting the foot, 60 days of percutaneous PNS 
therapy applied to the tibial and common peroneal nerves in the popliteal fossa resulted in the resolution of autonomic 
symptoms. Two of the three patients experienced pain relief for more than 8 months after discontinuing therapy.185 

Similarly, in a case series of 11 patients diagnosed with upper or lower extremity CRPS Type 2, all received an 
implantable PNS system after successfully responding to the trial phase. These patients experienced clinically significant 
pain reduction after a permanent PNS implant of about 5 points on the Numeric Rating Scale (NRS) of pain.186 In a 
retrospective chart review of 165 patients receiving surgical PNS implantation for CRPS type 1 or 2 of the upper or lower 
extremities with paddle-type SCS electrodes to function as PNS, pain scores on the NRS were about 1.9 points lower 
after 12 months. Concurrently, the percentage of patients receiving opioid therapy decreased from 62% to 41% after 12 
months. In addition, 51% of patients reported an improvement in functional status. As 34% of patients in this study 
required surgical revision, outcomes with modern, dedicated percutaneous PNS systems will likely improve with reduced 
complication rates.187 In a case series of 14 patients with refractory upper extremity CRPS, 10 received permanent PNS 
implants at the brachial plexus after a successful trial. At 12-month follow-up, these patients reported a 57.4% 
improvement in VAS scores and a 60% improvement in neuropathic pain symptoms, similarly demonstrating sustained 
treatment response to PNS among patients with CRPS.188 Goree et al reported on a randomized, sham-controlled trial of 
60-day PNS for post-knee replacement CRPS Type 2.189 Sixty percent of patients in the PNS group had at least 50% pain 
compared to a 24% response rate in the sham group. Additional randomized clinical trials will further establish the broad 
application of modern PNS systems in treating CRPS and determine patient and therapy-specific factors associated with 
positive treatment response. (Level I, Grade B)

Post-Amputation Pain
The ASPN Evidence-Based Clinical Guidelines for the Use of PNS in the Treatment of Chronic Pain recommend that

PNS may be considered for lower-extremity post-amputation pain following the failure of conservative treatment options and is 
associated with modest to moderate pain relief.8 

This recommendation stems in part from an RCT of 28 traumatic lower extremity amputees with post-amputation pain 
receiving either 8 weeks of percutaneous PNS targeting the femoral and sciatic nerves or 4 weeks of placebo followed by 
4 weeks of PNS after crossover. At 12 months, 6 of 9 patients receiving 8 weeks of PNS reported ≥50% reductions in 
average weekly pain, while 0 of 14 patients in the control group reported a significant reduction in pain after the 4-week 
placebo period.190 Given the 36% attrition rate from randomization to 12-month follow-up, additional research is needed 
to replicate these promising findings. In a pilot RCT of 16 veterans undergoing lower extremity amputation who had 
received femoral and sciatic peripheral nerve catheters, patients were eligible for enrollment if they reported pain scores 
≥4 out of 10 in the 24 to 48 hours after catheter removal. Patients were randomized to 60 days of PNS targeting the 
femoral and sciatic nerves combined with standard medical therapy or standard medical therapy alone. Initial outcomes at 
3 months demonstrate greater reductions in phantom limb pain, residual limb pain, and daily opioid consumption among 
those receiving PNS, signaling a role for PNS in the subacute phase after amputation.191 PNS may serve as an important 
bridge therapy to prevent the development of persistent pain after amputation and phantom limb pain. (Level I, Grade A)
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Consensus Guideline 9: In addition to strong evidence from RCTs and large retrospectives spanning a wide range of indications 
and nerve targets, focused studies support impactful treatment of a variety of anatomic targets, specific nerves, and specific 
painful conditions including shoulder (Level 1, Grade A), occipital nerve (Level 1, Grade B), sphenopalatine ganglion (Level 1, 
Grade C), pudendal nerve (Level 1, Grade B for voiding dysfunction and interstitial cystitis and Level II-3 Grade C for chronic 
pelvic pain), medial branch nerve (Level 1, Grade A), cluneal nerve (Level 1, Grade A), lower extremity (Level 1, Grade A), 
knee (Level 1, Grade A), ankle/foot pain (Level 1, Grade A), CRPS (Level 1, Grade B), lateral femoral cutaneous nerve (Level 
II-3 Grade B) and post-amputation pain (Level 1, Grade A). (See Table 7) 

Postoperative Pain
While a few small (<20 subjects) randomized proof-of-concept studies have suggested reduced pain and opioid 
requirements with PNS following various surgical procedures,174,191–193 only one trial prospectively powered to 
determine efficacy has been published involving postoperative pain.173 Participants undergoing ambulatory surgery 
were randomized to receive either active stimulation (n=32) or a sham (n=34) for 2 weeks in a double-masked fashion. 
During the first 7 postoperative days, opioid consumption in participants given active stimulation was a median [IQR] of 
5 mg [0, 30] versus 48 mg [25, 90] in patients given sham treatment (P<0.001). During this same period, the average pain 
intensity measured with a 0–10 numeric rating scale in patients given active stimulation was a mean ± SD of 1.1 ± 1.1 
versus 3.1 ± 1.7 in those given sham (P<0.001). No intervention-related adverse events were identified. Perhaps most 
compelling, participants who received active treatment had far less physical and emotional interference due to pain 
throughout the day following lead removal as measured with the Brief Pain Inventory (Interference Scale).194 While this 

Table 7 Level of Evidence by Pain Indication

Target Area Evidence Grade Indication

Upper Extremity Level I, Grade B 

Level 1, Grade A

Post-stroke shoulder pain 

Post-surgical/post-traumatic shoulder pain, peripheral neuralgia including pain due to nerve injury, 

postsurgical scar formation, nerve entrapment, mononeuropathy and osteoarthritic pain

Craniofacial Level I, Grade B 

Level III, Grade C 
Level I, Grade C

Occipital nerve PNS for refractory migraine 

Trigeminal nerve/branches for neuropathic craniofacial pain 
Sphenopalatine ganglion stimulation for cluster headaches

Abdominal/Pelvic Level I, Grade B 
Level II-3, Grade C 

Level II-3, Grade C 

Level II-3, Grade C 
Level II-3, Grade B

Pudendal nerve for interstitial cystitis-associated chronic pelvic pain 
Pudendal nerve for chronic pelvic pain 

Thoracoabdominal nerves (TAP) 

Ilioinguinal/Iliohypogastric nerves 
Genitofemoral nerve

Low Back Level I-A, Grade A 
Level I-B, Grade B 

Level I, Grade A

Multifidus stimulation 
Median branch nerve 

Cluneal nerve

Thoracic Level II-3, Grade B Intercostal nerve

Lower Extremity Level II-3, Grade B 
Level II-3, Grade B 

Level I, Grade A 

Level I, Grade A 
Level II-3, Grade B 

Level II-3, Grade B 

Level I, Grade B 
Level I, Grade A

Lateral femoral cutaneous nerve for meralgia paresthetica 
Sciatic, femoral, saphenous nerves for leg pain 

Genicular nerves, femoral and saphenous for knee pain 

Sciatic nerve for ankle/foot pain 
Nerves of the ankle 

Peripheral neuropathy 

Complex Regional Pain Syndrome (CRPS) 
Post-amputation pain

Postoperative Pain Level I, Grade B Upper extremity and lower extremity
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technique’s potential benefits include prolonged analgesia duration (up to 60 days currently) and lack of induced motor, 
sensory, and proprioception block, unit cost and time for lead insertion may be limiting factors.195 (Level I, Grade B)

Consensus Guideline 10: PNS in the post-operative period has demonstrated reduced opioid consumption, pain scores, and 
physical/emotional interference scores with Level 1 data. PNS is a highly effective treatment in the postoperative period, but 
payor policies are a restricting factor. 

Non-Pain Targets, Rehabilitation, and Motor Strengthening
Posterior Tibial Nerve
Tibial nerve stimulation (TNS) represents an important treatment modality for several urologic and gastrointestinal 
conditions via parasympathetic nervous system activation. Percutaneous TNS protocols for these indications often 
involve frequent visits for percutaneous needle placement to receive PNS. TNS applied via transcutaneous devices is 
an alternative approach. Percutaneous TNS represents a promising alternative to sacral nerve neuromodulation in treating 
fecal incontinence. In a meta-analysis of 4 RCTS spanning 439 adults with fecal incontinence, percutaneous TNS 
demonstrated superior efficacy compared to sham electrical stimulation in reducing weekly episodes of fecal incon
tinence, and a higher proportion of patients receiving percutaneous TNS reported a greater than 50% reduction in weekly 
fecal incontinence episodes.196 Percutaneous TNS for the treatment of overactive bladder has demonstrated more efficacy 
in reducing urgency urinary incontinence compared to certain antimuscarinics and results in improved daytime micturi
tion frequency and nocturia frequency comparable to other rehabilitation modalities.197 Still, more research is needed to 
determine its role in managing overactive bladder compared to more first-line therapies.198 When comparing neuromo
dulation modalities, including percutaneous/transcutaneous TNS, vaginal electrical stimulation, sacral neuromodulation, 
parasacral stimulation, pudendal neuromodulation, or placebo in a network meta-analysis of 21 RCTs spanning 1,433 
participants with overactive bladder, both percutaneous and transcutaneous TNS were most efficacious for reducing 
urgency incontinence episodes.199 Additional reported indications for percutaneous TNS include low anterior resection 
syndrome,200 lower urinary tract symptoms (urgency, frequency, nocturia, urge urinary incontinence) among patients 
with multiple sclerosis,201 and chronic prostatitis/chronic pelvic pain syndrome.202 (Level I, Grade A evidence)

Vagus Nerve
The ability to modulate activity in the parasympathetic nervous system via the vagus nerve is central in disease 
management in a wide range of disorders. Through its afferent projections to the brainstem’s nucleus tractus solitarius, 
which accounts for 80% of its fibers, the vagus nerve regulates brain physiology, chemistry, plasticity, and behavior.203 

Several methods of action have been identified with vagus nerve stimulation (VNS), including modulation of neuro
transmitters such as glutamate, norepinephrine, and serotonin, modulation of cortical spreading depression and electrical 
excitability, modulation of the autonomic nervous system, and modulation of inflammatory cytokines.

VNS has been FDA-cleared in the United States for treating epilepsy, major depression, multiple primary headaches, 
abdominal pain in children, addiction, post-stroke rehabilitation, and painful diabetic neuropathy. A systematic review of 
transcutaneous VNS for treating epilepsy found that multiple studies showed improved quality of life and that two 
showed statistically significant reductions in seizure frequency.204 The FDA also granted an EUA for known or suspected 
COVID-19 and a breakthrough designation for post-traumatic stress disorder. An RCT with 97 randomized COVID 
patients demonstrated reduced CRP levels in patients receiving non-invasive VNS205 (Level I, Grade B evidence). VNS 
has also shown promise in inflammatory disorders such as Sjogren’s disease, Rheumatoid Arthritis, and Crohn’s 
Disease.206 (Level II-3, Grade B evidence) Currently used implantable VNS devices include multiple systems by 
Livanova (formerly Cyberonics) (Houston, TX) that are used for the treatment of epilepsy207 and depression208 and by 
MicroTransponder (Austin, TX) that are used for post-stroke rehabilitation.209

Phrenic Nerve
Phrenic nerve stimulation was first introduced in the 1960s as respiratory support for high cervical spinal cord injury and 
central alveolar hypoventilation syndrome.210 Following initial pilot studies of transvenous phrenic nerve stimulation 
(TPNS) in central sleep apnea (CSA) and co-morbid heart failure (HF), a large, randomized control trial evidenced long- 
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term safety and efficacy in reducing CSA severity up to 4 years post-implant.211–213 (Level I, Grade B evidence). Later 
studies demonstrated safety and efficacy in HF patients, including those with implantable electronic devices.214,215 TPNS 
may be effective in weaning select ventilator-dependent patients; however, this was not substantiated in large, rando
mized control trials (RESCUE-2, RESCUE-3 NCT03783884).216,217 Currently, the US FDA approves phrenic nerve 
stimulation using the Avery Mark IV Breathing Pacemaker (Avery Biomedical, Commack, NY) for various 
indications.218

Hypoglossal Nerve
Hypoglossal nerve stimulation (HNS) evolved after loss of genioglossus muscle tone at sleep onset was linked to 
pharyngeal obstruction and obstructive sleep apnea (OSA).219,220 An initial 1997 study prompted further feasibility trials 
of fully implantable systems, confirming airflow dynamics and sleep apnea improvements.221 Following a landmark trial 
(STAR), HNS obtained Food and Drug Administration (FDA) approval in 2014 as second-line treatment for moderate to 
severe OSA that is refractory to positive airway pressure (PAP).222,223 Given proper patient selection, HNS has been 
extensively studied with evidenced effectiveness in reducing аpnеa-hypopnea index (AHI) up to nine years post- 
implantation.221 (Level I, Grade A evidence)

Occipital Nerve
Luckey et al examined memory in 30 subjects in a double-blind, sham-controlled, randomized trial.224 Half the 
participants received transcutaneous occipital nerve stimulation, whereas the other half received sham stimulation. 
Occipital nerve stimulation enhanced memory after just one session, with results lasting 28 days. The proposed 
mechanism is via the locus-coeruleus-noradrenaline pathway. This study observed changes in alpha-amylase, a nora
drenaline biomarker, following occipital nerve stimulation. Additional studies have demonstrated that occipital nerve 
stimulation can boost the retention of memories when applied around the time of learning by enhancing memory 
consolidation via this pathway.225,226 (Level I, Grade B evidence)

Trigeminal Nerve
Trigeminal nerve stimulation (TNS) has garnered interest in treating neurologic and psychiatric disorders.227 Initially 
described in case studies, TNS for drug-resistant epilepsy has been proven safe and effective for up to 12 months.228 

Based on the trigeminal nerve projections to the ascending reticular activating system, spinal locus, and cortex, along 
with a case report of awakening from a coma, TNS has been studied in recovery from traumatic brain injury with modest 
yet promising results.229 There is evidence to suggest that TNS may improve major depression, attention deficit 
hyperactivity disorder, and refractory schizophrenia.230–233 One study showed improved olfaction with TNS.234 (Level 
II-3, Grade B evidence) A recent prospective, double-blind, randomized controlled study evaluated the effect of 
trigeminal nerve stimulation on cerebral infarction occurrence in patients with aneurysmal subarachnoid hemorrhage. 
Still, no decrease in the stroke rate was observed secondary to vasospasm occurrence.235

Peroneal Nerve
Since the 1960s, common peroneal nerve stimulation (CPNS) has been investigated for improving post-stroke foot drop; 
the FDA has approved three distinct external devices.236 Many studies indicate that external and implanted CPNS 
systems are non-inferior to ankle-foot orthoses (AFO) for foot drop in stroke and gait in multiple sclerosis.237–239 

Notably, combined sensory and functional CPNS variations in meta-analyses and a standalone study report contrasting 
outcomes240–242 (Level I, Grade C evidence). CPNS has also been shown to be safe and effective in improving symptoms 
of medication-refractory restless leg syndrome (RLS) for up to 6 months, leading to its eventual FDA approval in 2023243 

(Level I, Grade A evidence).

Pudendal Nerve
Pudendal nerve stimulation has been described as a treatment for urinary retention.244 Another study demonstrated that 
daily pudendal nerve stimulation accelerated recovery from stress urinary incontinence.245 Feng et al conducted a parallel 
design randomized controlled trial with 96 subjects who had undergone radical prostatectomy, allocated as 64 patients in 
a group receiving pudendal nerve stimulation and 32 receiving pelvic floor muscle training and transanal electrical.246 
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Treatments were administered three times a week for eight weeks. The efficacy rate of 68.7% in the pudendal nerve 
stimulation group was nearly double the responder rate of 34.4% in the pelvic floor muscle training group. This indicates 
that pudendal PNS can almost double the likelihood of regaining urinary continence following radical prostatectomy. The 
mechanism of action is believed to be that pudendal nerve stimulation simulates pelvic floor muscle training. (Level I, 
Grade A evidence)

PNS for Sexual Dysfunction
Percutaneous tibial nerve stimulation (TNS) results in improvements related to both male and female sexual dysfunction 
in patients with overactive bladder, chronic pelvic pain, and nonobstructive retention. Patients report significant 
improvements in overall satisfaction, libido, and frequency of sexual activity in response to percutaneous TNS.247 In a 
prospective observational study of 41 women receiving percutaneous TNS for OAB reporting sexual dysfunction, 
participants reported significant improvements in sexual function independent of urinary symptoms.248 Among female 
patients with fecal incontinence who had failed to respond to biofeedback, percutaneous TNS resulted in significant 
improvements in bowel continence, bowel-related quality of life, and bowel-related sexual function, but not dyspareunia.
249 A systematic review of PNS across a variety of nerve targets for sexual dysfunction by Jin et al found that male 
patients experienced an improvement in erectile function, desire, and satisfaction, whereas desire, arousal, orgasm, 
lubrication, quality of “sex life”, intercourse capability, and dyspareunia improved in female patients.250 (Level II-3, 
Grade B evidence)

PNS for Tremors and Tics
Peripheral nerve stimulation has demonstrated benefits in treating tremors and tics. Small studies indicated that median 
and radial nerve stimulation reduced Parkinson’s and essential tremors.251,252 In 2021, the first FDA external stimulator 
device (Cala kIQ) obtained approval for Parkinson’s disease (action hand tremors) and essential tremors. Though 
stimulation of the median and radial nerves is proven safe, larger studies report mixed results on efficacy253,254 (Level 
II-3, Grade C evidence). Among tic spectrum disorders, case reports of Tourette’s syndrome describe improved motor 
and phonic tics after a vagal nerve stimulator implant.255,256 Two clinical trials of wearable median nerve stimulation 
(MNS) also evidenced efficacy in improving chronic tic disorder257,258 (Level I, Grade B evidence).

Consensus Guideline 11: A variety of nerve targets have demonstrated efficacy for non-pain applications, including posterior 
tibial nerve for urological issues (Level 1A), phrenic nerve for central sleep apnea (Level 1B), hypoglossal nerve for obstructive 
sleep apnea (Level 1A), occipital nerve for memory enhancement (Level 1B), common peroneal nerve for medication refractory 
restless leg syndrome (Level 1A), pudendal nerve to reduce urinary incontinence following radical prostatectomy (Level 1A), 
nerve stimulation for migraines, cluster headache, post traumatic stress syndrome, post stroke recovery (Level 1A) among 
numerous other inflammatory mediated disorders and median nerve for chronic tic disorder (Level 1B). (See Table 8) 

Surgical Best Practices
Tined vs Non-Tined and Anchoring
When deciding between tined and non-tined electrodes for peripheral nerve stimulation (PNS), consider anatomical 
factors and the desired outcome. Tined electrodes are ideal for areas with frequent movement, requiring secure fixation to 
prevent migration. They are suitable for deep nerve targets or regions prone to lead displacement. Non-tined electrodes 
are simple to place, may be preferred for superficial nerves or sites with less expected movement, and can be anchored to 
fascia at the insertion site. Factors such as patient comfort, anticipated duration of therapy, and lead stability should also 
be considered. Ultimately, the choice between tined and non-tined electrodes should be based on individual patient needs 
and the specific requirements of the procedure.

Closure
Saline irrigation prior to closure may reduce microbial burden.259 For optimal closure of a peripheral nerve stimulator 
(PNS) system, use absorbable sutures for deep tissue layers to minimize the risk of irritation and ensure stability. A cut- 
down should be deep enough to allow for a multi-layer closure to prevent future erosion of any implant material. For 
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superficial skin closure, options range from sub-cuticular absorbable sutures to non-absorbable sutures such as nylon or 
staples at the dermal-epidermal junction. Close the incision in at least 2–3 layers, ensuring that each layer is adequately 
approximated to promote proper healing.

Consensus Guideline 12:Best surgical practice for permanent PNS includes strategies to promote optimal wound healing, 
infection prevention, and prevent lead migration. Effective strategies include saline irrigation prior to closure, a deep enough cut 
down to allow for multi-layer closure, and closing in at least 2-3 layers when appropriate based on the implanted hardware. 

Post-Op Care
Advise patients to avoid bending, lifting, or twisting excessively for the first few weeks. Encourage gentle movement and 
walking to promote healing. Patients should keep the incision site clean and dry and follow the specific wound care 
instructions provided. They should immediately report any signs of infection, such as redness, swelling, or drainage. 
Emphasize the importance of attending the seven-to-ten-day follow-up appointment to monitor the system’s function and 
make necessary adjustments. Providing clear and comprehensive postoperative care instructions can help ensure optimal 
outcomes for patients with PNS systems.

Troubleshooting and Complications
Due to the relative novelty of peripheral nerve stimulation, there have not been many publications on troubleshooting 
PNS systems. Most of the literature centers on sacral neuromodulation when used to treat urogynecological disorders. 
However, based on the properties of peripheral nerves, we can better understand best practices for troubleshooting PNS 
systems. One major issue with PNS is an inability to get stimulation to target. While pre-implant diagnostic nerve blocks 
do not necessarily predict the success of PNS,52 some clinicians may use a peripheral nerve block to determine if the area 
supplied by the peripheral nerve gets appropriately anesthetized. Suppose the diagnostic block does not provide an 
appropriate response. This may predict an inability to get the PNS system to respond appropriately to electrical 
stimulation due to peripheral nerve damage.52

Undesirable motor and painful stimulation are also possible side effects of PNS. They are usually due to being too 
close to the nerve target, nonspecific stimulation, and/or using higher amplitudes than are required to achieve pain relief. 
New technologies that are not yet commercially available allow for selective stimulation of sensory and motor nerve 
fibers,260 but current technology does not allow this yet. Lastly, loss of efficacy can be an issue with PNS, as it is with 
many technologies. Loss of effectiveness is most commonly due to lead migration,261 with other possible etiologies, 
including lead fracture, habituation, and scar tissue around the lead contacts. Clinically, patients may also need a 
stimulation holiday when there is a perceived loss of efficacy, but more literature is required to support this theory.

Table 8 Level of Evidence by Functional Indication

Target Evidence Grade Indication

Posterior Tibial Nerve Level I, Grade A Fecal incontinence, overactive bladder

Vagus Nerve Level I, Grade B Epilepsy, Reduced CRP in COVID patients

Phrenic Nerve Level I, Grade B Central sleep apnea

Hypoglossal Nerve Level I, Grade A Obstructive sleep apnea

Occipital Nerve Level I, Grade B Enhances memory

Peroneal Nerve Level I, Grade A 

Level I, Grade C

Restless leg syndrome 

Post-stroke foot drop

Pudendal Nerve Level I, Grade A Urinary incontinence following radical prostatectomy

Median Nerve Level I, Grade B Chronic tic disorder
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Complications with PNS are similar to those seen with Spinal Cord Stimulation (SCS). Complications can be divided 
into hardware-related and biological complications. Hardware complications include lead migration, which can be higher 
in PNS than in SCS systems.261 Complications almost exclusively unique to PNS include lead erosion, which can be 
~7% in PNS systems261 and are less common in modern systems and when employing techniques with deeper 
implantation of lead anchoring devices. Finally, other serious complications for PNS systems include deep and superficial 
infection, pain over the implant site, and malfunction of the lead and/or implanted pulse generator.261,262 Fortunately, 
serious complications are rare, and PNS allows avoidance of risks associated with SCS, such as serious spinal cord injury 
or inadvertent dural puncture.

Billing, Insurance Coverage, and Requirements
Billing

CPT Codes for Leads
Physicians utilize unique CPT codes for the different types of peripheral nerve electrodes on the market for peripheral 
nerve stimulation (Table 9). A peripheral neurostimulator system includes an implanted pulse generator or implanted 
receiver with an external transmitter, a collection of contacts, electrodes (electrode array), an extension (if applicable), an 
external controller, and an external charger (if applicable). The electrode array conducts the electrical stimulation. The 
pulse generator or receiver may be integrated with the electrode array (single-component implant) or have a detachable 
connection to the electrode array (two or more component implant).

Trial vs Implant
Trials are typically performed before implantation to assess the effectiveness of PNS in managing neuropathic pain. They 
are minimally invasive and reversible, offering a valuable opportunity to evaluate patient response and adjust stimulation 

Table 9 wRVU Values for PNS CPT Codes (64555–64596) Compared to SCS CPT Codes (63650–63688)

CPT Description wRVU

64555 Percutaneous implantation of neurostimulator electrode 5.76

64575 Open Implantation of neurostimulator electrode array of peripheral nerve 4.42

64590 Insertion or Replacement of peripheral, sacral, or gastric neurostimulator pulse generator, requiring pocket creation and 

connection between electrode array and pulse generator or receiver

5.10

64596 Insertion or Replacement of percutaneous electrode array, peripheral nerve with integrated neurostimulator, including imaging 

guidance

0.00

64585 Revision or Removal of peripheral neurostimulator electrode 2.11

64595 Revision or Removal of peripheral, sacral, or gastric neurostimulator pulse generator or receiver, with detachable connection to 

electrode

3.79

63650 Percutaneous implantation of neurostimulator electrode array, epidural 7.15

63685 Insertion or Replacement of spinal neurostimulator pulse generator or receiver, requiring pocket creation and connection 
between electrode array and pulse generator or receiver

5.19

63661 Removal of spinal neurostimulator electrode percutaneous array(s) including fluoroscopy when performed 5.08

63663 Revision including replacement when performed, of spinal neurostimulator electrode percutaneous array(s), including 

fluoroscopy, when performed

7.75

63688 Revision or removal of implanted spinal neurostimulator pulse generator or receiver, with detachable connection to electrode 

array

4.35
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parameters. However, trial success rates vary, and factors such as patient selection, trial duration, and trial lead location 
influence outcomes.

The decision to proceed with implantation after a successful trial is usually based on the degree of pain relief and 
improvement in function experienced by the patient. Although implantation is a more invasive procedure, it offers the 
potential for long-term pain relief in carefully selected patients.

Careful patient selection, proper trial design, and close collaboration between pain specialists and patients must be 
prioritized to optimize outcomes with PNS therapy.

Single vs Multiple Leads
The decision to use one or two leads for peripheral nerve stimulation depends on several medical factors already outlined. 
However, there are also factors related to payor coverage tied to Place of Service (POS). When POS is the Hospital 
Outpatient Department (HOPD), a flat charge is provided for lead placement and does not increase when two leads are 
placed. In the ASC setting, there is an additional payment for the second lead. Therefore, a local cost and payment 
analysis may need to be performed to determine the viability of two lead trials in a healthcare setting. POS is less 
important when considering permanent implantation as overall reimbursement rates generally support two lead place
ments in either setting (see Table 11).

Coding for IPG/Micro-IPG Placement
The updated CPT descriptions distinguish between integrated and non-integrated peripheral nerve stimulator (PNS) 
codes. For example, CPT code 64590 involves creating a pocket and connecting an electrode array to a pulse generator or 
receiver without specifying the size or type of the IPG. On the other hand, CPT code 64596 involves inserting an 
electrode array with an integrated neurostimulator, including imaging guidance, when performed. Incorrect labeling or 
coding can lead to non-reimbursement or the need for repayment after audit (“claw back”). An integrated neurostimulator 
contains the pulse generator or receiver and the electrode array as an all-in-one unit. A small incision is made, and the 
electrode array is tunneled percutaneously to the appropriate site. The same incision site is then used to create the pocket 
for the pulse generator or receiver. If more than one electrode array is used, add-on code 64597 may be reported for each 
additional electrode array. All of the aforementioned codes have a Global Period of 10 days.

Consensus Guideline 13: Given the rapid advancement of PNS technologies and variability between platforms, physicians 
should be familiar with the details of the device they are utilizing and how it fits into the existing CPT code descriptions to 
ensure accurate coding. 

Coding for Imaging Guidance
For peripheral nerve stimulator procedures, fluoroscopic needle guidance is included in CPT code 64555 for lead 
placement and should not be billed separately. However, ultrasound needle guidance can be billed separately, if 
performed, as CPT 76942, typically with the −26 modifier to indicate the professional component.

Insurance Coverage and Reimbursement
Medicare NCD (National Coverage Determination) and LCD (Local Coverage Determination) for PNS
CMS defines NCDs, and regional MACs define LCDs, which dictate the coverage and provision of care to patients 
(Figure 4). In simpler terms, NCDs can be viewed as the national standard and LCDs as regional guidelines that cannot 
override the national standard but can provide more specific criteria. There is currently an NCD - Electric Nerve 
Stimulators (160.7) from CMS and LCD - Peripheral Nerve Stimulation (L34328 and L37360) from the Medicare 
Contractor Noridian. This contractor covers the states of Washington, Alaska, American Samoa, Arizona, California, 
Guam, Hawaii, Idaho, Nevada, Northern Mariana Islands and Oregon.

The Medicare NCD describes electric nerve stimulators as prosthetic devices. It does not provide medical necessity 
requirements. The Medicare Local Coverage Determination (LCD) for Peripheral Nerve Stimulation (PNS) by Noridian 
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states that a peripheral nerve stimulation trial can be considered for the management of chronic pain if all the criteria are 
met (Table 10).

Peripheral nerve stimulation (PNS) may be covered for relief of chronic intractable pain for patients with conditions 
known to be responsive to this form of therapy after attempts to cure the underlying conditions, and appropriate attempts 
at medication management, physical therapy, psychological therapy, and other less invasive interventional treatments. An 
effective trial is a prerequisite for permanent implantation. The current LCD does not support the use of PNS for 
fibromyalgia, phantom limb pain, diffuse polyneuropathy, nociceptive pain in the trunk or lower back, or angina pectoris. 
Claims with these diagnoses will be denied as unreasonable and not medically necessary. The LCD provides a non- 
comprehensive list of indications with sufficient evidence of efficacy (Table 10).

There are significant access issues for PNS regarding coverage under Medicare Advantage plans, also known as 
Option C. Medicare Advantage plans are obligated to provide, at a minimum, coverage of all care that would apply under 
a Medicare plan. Specifically, Final Rule CMS-4201-F requires that Medicare Advantage plans must comply with 
established NCDs and LCDs (https://www.cms.gov/newsroom/fact-sheets/2024-medicare-advantage-and-part-d-final- 
rule-cms-4201-f). Unfortunately, many Advantage plans detail criteria that impede patients from accessing PNS coverage 
in violation of federal regulation. Some Option C carriers defer their policies to the Noridian LCD (L37360), while others 
do not provide such a path for patient selection and treatment. These authors have had nearly 100% success in taking 
denials to Administrative Law Judges (ALJ), where medical necessity is not a factor, but rather, cases are settled as a 

Figure 4 NCD and LCD Overview Overview of determinations for Medicare coverage. 
Abbreviations: NCD, National Coverage Determination; LCD, Local Coverage Determination.

Table 10 Noridian LCD Criteria

Noridian LCD Criteria

1. Documented chronic and severe pain for at least 3 months,

1. Documented failure of less invasive treatment modalities and medications,

1. Lack of surgical contraindications including infections and medical risks,

1. Appropriate proper patient education, discussion and disclosure of risks and benefits,

1. No active substance abuse issues,

1. Formal psychological screening by a mental health professional,

1. Successful stimulation trial with greater than or equal to 50% reduction in pain intensity before permanent implantation.
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matter of regulation on the basis that Medicare Advantage plans must comply with the traditional Medicare coverage 
determinants. Medicare Advantage plans rely on star ratings, which is a tool used by the Centers for Medicare & 
Medicaid Services (CMS) to measure and rate the performance of Medicare Advantage (Part C) and Medicare 
Prescription Drug (Part D) plans. These ratings help Medicare beneficiaries compare plans and make an informed 
decision about their healthcare coverage. These ratings are negatively impacted when they lose cases in front of ALJs, 
which indicates they impede patient access to care.

Consensus Guideline 14: PNS is a covered therapy under traditional Medicare. Medicare Advantage (Part C) must comply with 
established NCDs and LCDs. NCD 160.7 grants coverage of PNS. Physicians should pursue appeal for Medicare Advantage 
denials as Administrative Law Judges (ALJ) primarily rectify denials to ensure coverage is aligned with CMS guidance. 

Medicaid Coverage
Medicaid coverage of PNS is relatively poor. Most state Medicaid plans do not offer coverage of PNS and label it as 
experimental/investigational despite extensive studies, including RCTs, documenting the efficacy of PNS across a 
plethora of indications.56,95,96,263 Where there are rare exceptions allowing coverage of PNS under Medicaid plans, 
the reimbursement is generally insufficient to make it a viable option (https://pcl.promedica.org/-/media/paramount/ 
assets/documents/medicalpolicy/pg0406_implantable_peripheral_nerve_stimulation.pdf?rev=c1117433a00c409ead91 
da74695f745d). Due to significant advocacy efforts, Colorado, Kentucky, Michigan, and Tennessee have Medicaid 
reimbursement rates that closely mimic Medicare, providing patients access to 60-day PNS treatment. There is data to 
suggest that Oklahoma, Missouri, Idaho, New Mexico, and possibly Nevada and Florida have Medicaid reimbursement 
rates that support permanent PNS implantation.

Commercial Insurers
Most commercial insurance plans do not cover peripheral nerve stimulation despite the evidence mentioned throughout 
this publication. Insurers may respond to pretreatment queries for PNS coverage with a statement of “no preauthorization 
required.” This language is misleading, commonly misinterpreted as a treatment is covered, and may proceed without a 
preauthorization submission. This misinterpretation creates frequent conflict between care teams, their facilities, and 
patients as payment is denied post-treatment. The resultant 5-figure cost transfers to patients with chronic intractable 
pain, their care teams, and the healthcare system. In the opinion of these authors, the use of “preauthorization not 
required” or “no auth required” in response to a patient or clinical team query should not be permitted without a 
concurrent statement on whether the benefit is even theoretically covered versus noncovered in the plan itself. These 
authors have generally found that coverage among commercial payors is successful approximately 30% of the time, 
following prior authorization attempts, peer-to-peers, and appeals.

Consensus Guideline 15: Given the large body of evidence supporting the efficacy of PNS across multiple indications and nerve 
targets as well as individual studies focused on specific indications, payors should cover PNS for chronic pain in patients who 
have failed to improve with conservative treatment. 

Requirement of Nerve Blocks Before PNS Trial
Policies on the requirement for diagnostic nerve injections before the PNS trial vary by payors. Most policies do not have 
any clear guidance on nerve blocks before trial. CMS guidance states explicitly that the PNS trial is the ultimate 
determinant of the appropriateness of a patient for PNS implantation. While there may be a perception that nerve blocks 
help determine the pain generator, this has not been born out as a successful predictor of PNS success.52 An analysis of 
173 patients undergoing PNS by Hoffmann et al showed no difference in pain relief at 3- or 6-months post-implant 
between patients who had successful preimplant diagnostic nerve injections and those in the control group.

Reimbursement Variance by Location of Service
Place of service significantly impacts reimbursement for most medical procedures. Codes indicating the place of service 
include Office (code 11), ASC (code 24), and Hospital Outpatient Department (HOPD, code 22 or 19). While 
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reimbursement and costs vary widely based on geographical location, supplier contracts, and payor policies, data on 
CMS reimbursement provides insight into the differential (Table 11).

Utility of Psychological Evaluation
Studies, reviews, and guidelines continue to recommend the exclusion of patients with “psychiatric disease” as resulting 
in a negative impact on patients’ potential to respond favorably to PNS,264,265 relying on “consensus”, at best, rather than 
providing empirical evidence.266 Even studies that have attempted to predict PNS outcomes have excluded patients based 
on psychological factors, irrespective of the lack of evidence for doing so.267 Campbell et.al concluded that psychological 
evaluation is generally included pre-SCS”, although no consensus to date has been reached regarding what specifically 
the assessment should include and what cut-off levels should be adopted for various questionnaire measures.”268 There 
has been no subsequent evidence basis for these assessments nor any consensus.

Although patients with pain are routinely denied PNS because of depression, the empirical literature strongly suggests 
that PNS is associated with decreases in depression scores in headache patients at 6 and 12 months following the 
initiation of treatment.269 This finding is consistent with 3-month data in an earlier study of headache patients,270 as well 
as data demonstrating post-PNS reductions in depression in post-amputation patients, those with chronic knee pain,176 

and likely other pain conditions. Accordingly, psychological evaluation requirements before PNS have the potential to 
exclude depressed patients when the empirical evidence points to this treatment’s potential to reduce depression.

Even though strong, evidence-based guidelines8 for PNS have recommended psychological evaluation before PNS, 
no empirical evidence supports such. Until data or even a strong consensus demonstrating a significant relationship 
between psychological factors and PNS outcomes is available, the insurance industry-mandated requirement for a 
psychological evaluation before PNS should be reconsidered.

Consensus Guideline 16: Given the lack of empirical evidence and a failure to establish a significant relationship between 
psychological factors and PNS outcomes, psychological evaluation before PNS should not be mandated by payors. 

Health Economics
Increasing patient access to PNS will require improved payor coverage of the therapy. In addition to the growing body of 
evidence that strongly supports the efficacy of PNS and systematic reviews further reinforcing this, healthcare utilization 
and cost-effectiveness studies will help make the financial argument to payors. A cost-benefit analysis that looked 

Table 11 Medicare National Average Reimbursement 
Differential Between ASC and HOPD

Procedure ASC HOPD

One lead trial $5,620 $6,523

Two lead trial $11,240 $6,523

One lead + IPG $24,627 $29,617

Two leads + IPG $30.247 $29,617

Revision/Removal one lead $1,898 $3,245

Revision/Removal two leads $2,847 $3,245

Revision/Removal IPG $1,898 $3,245

Notes: Reference for table: CMS-1784-F. Medicare 2024 Physician Fee 
Schedule – January 2024 Addendum B updates. 2024 Conversion Factor 
$32.74. CMS-1786-FC Addendum B.-OPPS Payment by HCPCS Code for 
CY 2024 and Addendum AA – Final ASC Covered Surgical Procedures 
for CY 2024.
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collectively at PNS, as well as SCS, found that patients experience reductions in physician office visits, nerve blocks, 
radiologic imaging, emergency department visits, hospitalizations, and surgical procedures, totaling a net annual savings 
of approximately $30,221.271 This resulted in an overall net per patient per year cost savings of roughly $17,903. Bulsei 
et al examined the financial impact of occipital nerve stimulation and found that while cost went up on a short time 
horizon, such as 3 months, it was lower by 1,344 Euros in one year.272 Furthermore, when looking at indirect costs such 
as disability and sick leave, there was a reduction of 377 Euros for the occipital nerve stimulation group in the first 3 
months.

Kalia et al evaluated the healthcare utilization and costs of 122 patients with chronic pain treated with PNS 
using a micro-implantable pulse generator.273 The authors observed a postop vs preop reduction in outpatient 
visits (4.9 vs 5.7), a 50% reduction in mean total medical costs ($13,717 vs $27,493), and a 57% reduction in 
median total medical costs ($5,094 vs $11,809). Furthermore, the proportion of patients using opioids was 31.4% 
lower.

Consensus Guideline 17: Multiple healthcare economics analyses have concluded that utilization of PNS reduces healthcare 
visits and total medical costs. This evidence supports reductions in hospitalizations, other surgical procedures, and opioid use. 
Future prospective studies should incorporate these metrics as an additional outcome measure. 

Moving PNS Forward
Future Areas of Research
The body of research in PNS has grown significantly over the last 40 years, with the most significant surge in the 
previous decade (Figure 5). To further establish PNS as a standard of treatment for common neuropathic pain conditions, 
additional high-level evidence will be beneficial. Prospective randomized studies do exist that add credibility to the 
grading and proof, as outlined in this paper. Further studies are required to better understand best practices for PNS. This 
would include more disease-specific studies that give insight into which disease states are most responsive and how to 
optimize patient selection. A prospective registry of future cases on PNS would provide insight into patient selection and 
target sites.

While RCTs are growing in prevalence and demonstrate the efficacy of PNS across many painful conditions, a 
continued focus on RCTs and, particularly, sham-controlled studies will help expand payor coverage of this beneficial 
therapy. Comparisons of lead designs, neural targets, and waveforms could be used in study design.72,173,274,275 

Additional research to further identify the potential role of age, gender, body mass index (BMI), tobacco and alcohol 
use, and other demographics may further clarify selection criteria, thereby further boosting PNS efficacy. Furthermore, 
with multiple available platforms for PNS, studies focused on the personalization and titration of stimulation to optimize 
responder rates will be useful for physician decision-making.

Expanding indications for PNS supported by safe and replicable procedural techniques for each novel target will help 
extend the reach of the therapy. Beyond pain indications, as discussed in this paper, there is great potential in applying 
PNS to non-pain indications. This promising research area may position interventional pain providers as best suited to 

Figure 5 Clinical Trial and Retrospective Study Publications on PNS Annual PNS-related publications over a 40-year period. Source: PubMed Search, 02/10/2025.
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deliver innovative therapy across various atypical indications. The first step may be to collect a broader range of non-pain 
secondary outcome measures as part of future study design.

Future Product Development
Significant advances in the design of PNS-specific hardware have been made over the last decade, and current devices 
represent a substantial improvement over the initial implants that led to insurance coverage for this treatment.

There is still great potential to advance the physical and intangible technologies underpinning the therapy. New lead 
designs and miniaturization could expand the market for PNS by increasing physician confidence and comfort in 
placement across a variety of targets through collapsible lead tines for mobile areas such as joints and the axilla, smaller 
diameter lead designs for safety in facial, head, and neck applications, closed-loop PNS to improve consistency and 
reduce habituation and uncomfortable paresthesias, EMG feedback, resorbable leads for time-limited applications, and 
improved instrumentation to remove non-functioning implanted devices.261,276 The future of pulse generators may lie in 
even smaller battery-inclusive, fully implantable devices or decoupled devices with external batteries with enhancements 
to minimize pairing issues with a greater tolerance for distance between the internal IPG/receiver and the external power 
source. Furthermore, smaller profiles and more form-fitting external devices will improve patient acceptance and 
compliance. Some innovations are already being reported in the literature in early form that may predict future products 
that could enter the market (Table 12).

Conclusion
Progress within peripheral nerve stimulation has brought us to a pivotal time in the field. Efficacy research, 
including RCTs yielding impactful data on outcomes, important work on healthcare utilization and economics is 
building the case for PNS among payors; data on secondary outcomes such as reduced opioid utilization, 
functional outcomes, and sleep as well as minimizing sick and disability leave all add to the value proposition 
of PNS for patients. The endless frontier of possibilities for nerve targets and indications and significant research 
and understanding in non-pain applications continue to expand. These consensus guidelines (See Table 13) 
provide an essential framework for skilled interventional pain practitioners, offering evidence-based recommenda
tions intended to guide current clinical practice and support decision-making in this evolving field. These 
practitioners leading our field can help refine the education tracks of our training to optimize ultrasound skills, 
image-guided lead placement, and understanding of patient selection and nerve targeting. The future of PNS holds 
great promise powered by research, technological advancement, and the determination of practitioners who have 
seen transformative outcomes in their patients.

Consensus Guideline 18: High level evidence, including RCTs, on efficacy, healthcare utilization and economic data, as well as 
work focused on functional outcomes, opioid use, and indirect benefits all strongly support the use of PNS in patients with 
chronic pain. PNS is a well-established and evidence-based therapy for patients with chronic pain who have failed conservative 
treatment. 

Table 12 PNS Innovations Discussed in the Literature

PNS Innovation Description

Remote Electrical 
Neuromodulation (REN)

The device is placed remotely to target a more central focus, such as the upper arm stimulating peripheral 
nerves to reduce acute migraine

Brief Electrical Stimulation (BES) Enhances neuronal regeneration after perioperative nerve injury by modulating the brain-derived neurotrophic 
growth factor (BDNF) pathways84

Neuroprosthetics A mechanical device that can be controlled by or send sensory feedback to the patient’s nervous system to 
generate PNS sensation mimicking their missing limbs.277

Percutaneous Stimulation Treatment of the hypoglossal nerve and ansa cervicalis to treat obstructive sleep apnea.278,279
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Table 13 Summary of ASPN NEURON PNS Consensus Guidelines

Guideline 
Number

Topic Statement

1 MOA The mechanism of action (MOA) of Peripheral Nerve Stimulation (PNS) is complex. It includes modulation of local 
transmission of pain signals, inhibition of local A and C fibers with repeated stimulation, impact on local inflammatory 
mediators, endogenous opioids and neurotransmitters, gate control theory, and peripherally induced reconditioning 
of the central nervous system. Future research will help further describe the MOA of PNS.

2 Frequency Low and mid-range frequency settings can be utilized for motor, sensory, parasympathetic, and sympathetic 
stimulation, respectively, and are well-studied in the literature. High and ultra-high frequency and high pulse width 
stimulation have each been shown to be associated with promising outcomes and should be the focus of further 
research.

3 Stimulation Types PNS should be clearly differentiated in payor policies from the divergent and unrelated therapies of peripheral nerve 
field stimulation (PNfS), indirect percutaneous electrical stimulation (PENS), and transcutaneous electrical nerve 
stimulation (TENS). Peer-reviewed literature has extensively differentiated PNS from these treatments.

4 Nerve Blocks While nerve blocks may be utilized in the early diagnostic and therapeutic phases of patient care, the literature does 
not support their prognostic value in predicting response to a PNS trial.

5 Device Choice Given the wide variability between implantable, external, and hybrid decoupled PNS systems, as well as the rapid 
pace of innovation in the field, payor policies should defer to shared medical decision making by the treating 
physician and patient to maximize patient satisfaction, safety and efficacy across diverse clinical scenarios when 
selecting a PNS platform.

6 MRI Implications MRI conditionality, and the variability and complexity of determining MRI implications in the setting of various 
devices, lead targets, orientation and patient factors, results in the requirement for physicians to consider MRI 
implications in partnership with the patient when selecting a PNS platform.

7 Imaging Guidance Most PNS anatomic targets can be easily identified and accessed using ultrasound or fluoroscopic guidance while 
some targets may be preferentially identified using one modality or the other. Multiple factors including equipment 
availability and physician preference with imaging modalities may dictate an optimal approach for each case. Thus, 
payor policies should be inclusive of multiple approaches permitting physician selection of appropriate imaging 
guidance during PNS placement.

8 Strength of Evidence (Overall) The evidence for PNS independent of nerve target or pain indication is strong. Due to the broad array of studies, 
including randomized controlled trials and large retrospective studies in addition to smaller, more focused studies, 
the overall evidence is Level 1, Grade A. It is important to note that responder rate and average pain relief are 
clinically significant and consistent across a variety of pain indications and nerve targets including within studies that 
examined multiple targets.

9 Strength of Evidence 
(Pain Indications)

In addition to strong evidence from RCTs and large retrospectives spanning a wide range of indications and nerve 
targets, focused studies support impactful treatment of a variety of anatomic targets, specific nerves, and specific 
painful conditions including shoulder (Level 1, Grade A), occipital nerve (Level 1, Grade B), sphenopalatine ganglion 
(Level 1, Grade C), pudendal nerve (Level 1, Grade B for voiding dysfunction and interstitial cystitis and Level II-3 
Grade B for chronic pelvic pain), medial branch nerve (Level 1, Grade A), cluneal nerve (Level 1, Grade A), lower 
extremity (Level 1, Grade A), knee (Level 1, Grade A), ankle/foot pain (Level 1, Grade A), CRPS (Level 1, Grade B), 
lateral femoral cutaneous nerve (Level II-3 Grade B) and post-amputation pain (Level 1, Grade A).

10 Strength of Evidence 
(Post-Op Pain)

PNS in the post-operative period has demonstrated reduced opioid consumption, pain scores, and physical/ 
emotional interference scores with Level 1 data. PNS is a highly effective treatment in the postoperative period, but 
payor policies are a restricting factor.

11 Strength of Evidence 
(Functional Indications)

A variety of nerve targets have demonstrated efficacy for non-pain applications, including posterior tibial nerve for 
urological issues (Level 1A), phrenic nerve for central sleep apnea (Level 1B), hypoglossal nerve for obstructive sleep 
apnea (Level 1A), occipital nerve for memory enhancement (Level 1B), common peroneal nerve for medication 
refractory restless leg syndrome (Level 1A), pudendal nerve to reduce urinary incontinence following radical 
prostatectomy (Level 1A), nerve stimulation for migraines, cluster headache, post traumatic stress syndrome, post 
stroke recovery (Level 1A) among numerous other inflammatory mediated disorders and median nerve for chronic 
tic disorder (Level 1B).

12 Surgical Practice Best surgical practice for permanent PNS includes strategies to promote optimal wound healing, infection 
prevention, and prevent lead migration. Effective strategies include saline irrigation prior to closure, a deep enough 
cut down to allow for multi-layer closure, and closing in at least 2–3 layers when appropriate based on the implanted 
hardware.

13 Coding Compliance Given the rapid advancement of PNS technologies and variability between platforms, physicians should be familiar 
with the details of the device they are utilizing and how it fits into the existing CPT code descriptions to ensure 
accurate coding.

(Continued)
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Guideline 
Number

Topic Statement

14 Medicare and Medicare 
Advantage Coverage

PNS is a covered therapy under traditional Medicare. Medicare Advantage (Part C) must comply with established 
NCDs and LCDs. NCD 160.7 grants coverage of PNS. Physicians should pursue appeal for Medicare Advantage 
denials as Administrative Law Judges (ALJ) primarily rectify denials to ensure coverage is aligned with CMS guidance.

15 Commercial 
Insurance Coverage

Given the large body of evidence supporting the efficacy of PNS across multiple indications and nerve targets as well 
as individual studies focused on specific indications, payors should cover PNS for chronic pain in patients who have 
failed to improve with conservative treatment.

16 Psychological Evaluation Given the lack of empirical evidence and a failure to establish a significant relationship between psychological factors 
and PNS outcomes, psychological evaluation before PNS should not be mandated by payors.

17 Healthcare Economics Multiple healthcare economics analyses have concluded that utilization of PNS reduces healthcare visits and total 
medical costs. This evidence supports reductions in hospitalizations, other surgical procedures, and opioid use. 
Future prospective studies should incorporate these metrics as an additional outcome measure.

18 Strength of Evidence High level evidence, including RCTs, on efficacy, healthcare utilization and economic data, as well as work focused on 
functional outcomes, opioid use, and indirect benefits all strongly support the use of PNS in patients with chronic 
pain. PNS is a well-established and evidence-based therapy for patients with chronic pain who have failed 
conservative treatment.
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